Division of Applied Chemistry, Osaka University Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Research Division of Environmental Technology, Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka, 536-8553, Japan.
ChemSusChem. 2022 Sep 7;15(17):e202200932. doi: 10.1002/cssc.202200932. Epub 2022 Jul 13.
The applicability of chitin-based carbon as a supercapacitor electrode material was investigated by adjusting its pore structure through polystyrene latex templating, without significant N doping. 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-oxidized chitin nanofibers were mixed with polystyrene latex, hydrothermally treated at 220 °C, carbonized, and activated using KOH at 800 °C, yielding activated hierarchical porous carbon. The variation of both polystyrene latex amount and carbonization temperature resulted in changes in the surface area and pore structure, which dictated the degree of pore uniformity and activation efficiency. The pore structure affected activation by allowing the selective removal of amorphous carbon, exposing the basal plane carbon, resulting in higher specific capacitance. By making activated hierarchical porous carbon more conducive to activation, specific capacitance of 567 F g at 0.5 A g was achieved, with no loss in performance after 10000 charge-discharge cycles.
通过聚苯乙烯乳胶模板化调整其孔结构,而不进行显著的 N 掺杂,研究了壳聚糖基碳作为超级电容器电极材料的适用性。将 2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)氧化的壳聚糖纳米纤维与聚苯乙烯乳胶混合,在 220°C 下进行水热处理,碳化,并在 800°C 下使用 KOH 进行活化,得到活化的分级多孔碳。聚苯乙烯乳胶用量和碳化温度的变化导致了表面积和孔结构的变化,从而决定了孔均匀度和活化效率的程度。孔结构通过允许选择性去除无定形碳来影响活化,暴露出基面碳,从而获得更高的比电容。通过使活化的分级多孔碳更有利于活化,在 0.5 A g 的电流密度下实现了 567 F g 的比电容,在 10000 次充放电循环后没有性能损失。