Naderi Leila, Shahrokhian Saeed
Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
Nanoscale. 2022 Jun 30;14(25):9150-9168. doi: 10.1039/d2nr01247b.
The increasing energy demand for next-generation portable and miniaturized electronics has drawn tremendous attention to develop microscale energy storage and conversion devices with light weight and flexible characteristics. Herein, we report the preparation of flower-like cobalt vanadium selenide/nickel copper selenide (CoVSe/NiCuSe) microspheres with three-dimensional hierarchical structure of micropore growth on copper wire for a flexible fiber microsupercapacitor (microSC) and overall water splitting. The CoV-LDH microspheres are anchored on the dendrite-like NiCu nanostructured Cu wire using a hydrothermal method (CoV-LDH/NiCu@CW). The sulfidation and selenization of CoV-LDH/NiCu was carried out through the ion-exchange reaction of OH with sulfide and selenide ions to obtain CoVS/NiCuS@CW and CoVSe/NiCuSe@CW electrodes, respectively. Benefitting from the unique structure, the flower-like CoVSe/NiCuSe@CW microspheres exhibit better electrochemical performance compared with other as-prepared fiber-shaped electrodes. As an electrode active material for microSC, CoVSe/NiCuSe microspheres exhibit a specific capacitance of 35.40 F cm at 4 mA cm, and maintain 281.25 F cm even at a high current density of 83 mA cm, indicating outstanding charge storage capacitance and excellent rate capability. Moreover, the assembled flexible solid-state asymmetric microSCs based on flower-like CoVSe/NiCuSe microspheres-coated Cu wire as the positive electrode and polypyrrole/reduced graphene oxide-coated carbon fiber as the negative electrode manifests a maximum energy density of 20.17 mW h cm at a power density of 624.32 mW cm and remarkable cycling stability (96.7% after 5000 cycles) with good mechanical stability. As an electrocatalyst for oxygen and hydrogen evolution reactions in alkaline medium, the CoVSe/NiCuSe electrode delivers an overpotential of 297 mV and 165 mV at 100 mA cm. Furthermore, the CoVSe/NiCuSe-based electrolysis cell for overall water splitting presents a low cell voltage (1.7 V at 50 mA cm) as well as high durability.
下一代便携式和小型化电子产品对能量的需求不断增加,这引发了人们对开发具有轻质和柔性特性的微型能量存储与转换设备的极大关注。在此,我们报道了一种用于柔性纤维微型超级电容器(微型SC)和整体水分解的、在铜线上具有三维分级微孔生长结构的花状钴钒硒化物/镍铜硒化物(CoVSe/NiCuSe)微球的制备。采用水热法将CoV-LDH微球锚定在树枝状NiCu纳米结构的铜线上(CoV-LDH/NiCu@CW)。通过OH与硫离子和硒离子的离子交换反应对CoV-LDH/NiCu进行硫化和硒化,分别得到CoVS/NiCuS@CW和CoVSe/NiCuSe@CW电极。得益于独特的结构,与其他制备的纤维状电极相比,花状CoVSe/NiCuSe@CW微球表现出更好的电化学性能。作为微型SC的电极活性材料,CoVSe/NiCuSe微球在4 mA cm时的比电容为35.40 F cm,即使在83 mA cm的高电流密度下仍保持281.25 F cm,表明其具有出色的电荷存储电容和优异的倍率性能。此外,基于花状CoVSe/NiCuSe微球包覆铜线作为正极和聚吡咯/还原氧化石墨烯包覆碳纤维作为负极组装的柔性固态非对称微型SCs,在功率密度为624.32 mW cm时表现出20.17 mW h cm的最大能量密度,具有显著的循环稳定性(5000次循环后为96.7%)和良好的机械稳定性。作为碱性介质中析氧和析氢反应的电催化剂,CoVSe/NiCuSe电极在100 mA cm时的过电位分别为297 mV和165 mV。此外,基于CoVSe/NiCuSe的用于整体水分解的电解池具有低电池电压(50 mA cm时为1.7 V)以及高耐久性。