Suppr超能文献

GSK3α 的超分子组装作为细胞对氨基酸饥饿的反应。

Supramolecular assembly of GSK3α as a cellular response to amino acid starvation.

机构信息

Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany.

Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover 30625, Germany.

出版信息

Mol Cell. 2022 Aug 4;82(15):2858-2870.e8. doi: 10.1016/j.molcel.2022.05.025. Epub 2022 Jun 21.

Abstract

The tolerance of amino acid starvation is fundamental to robust cellular fitness. Asparagine depletion is lethal to some cancer cells, a vulnerability that can be exploited clinically. We report that resistance to asparagine starvation is uniquely dependent on an N-terminal low-complexity domain of GSK3α, which its paralog GSK3β lacks. In response to depletion of specific amino acids, including asparagine, leucine, and valine, this domain mediates supramolecular assembly of GSK3α with ubiquitin-proteasome system components in spatially sequestered cytoplasmic bodies. This effect is independent of mTORC1 or GCN2. In normal cells, GSK3α promotes survival during essential amino acid starvation. In human leukemia, GSK3α body formation predicts asparaginase resistance, and sensitivity to asparaginase combined with a GSK3α inhibitor. We propose that GSK3α body formation provides a cellular mechanism to maximize the catalytic efficiency of proteasomal protein degradation in response to amino acid starvation, an adaptive response co-opted by cancer cells for asparaginase resistance.

摘要

氨基酸饥饿耐受是细胞强健适应性的基础。天冬酰胺缺乏对某些癌细胞是致命的,这种脆弱性可以在临床上被利用。我们报告称,对天冬酰胺饥饿的抵抗性独特地依赖于 GSK3α 的 N 端低复杂度结构域,而其同源物 GSK3β 缺乏该结构域。在响应包括天冬酰胺、亮氨酸和缬氨酸在内的特定氨基酸的消耗时,该结构域介导 GSK3α 与泛素蛋白酶体系统成分在空间隔离的细胞质体内的超分子组装。这种作用独立于 mTORC1 或 GCN2。在正常细胞中,GSK3α 在必需氨基酸饥饿期间促进存活。在人类白血病中,GSK3α 体的形成预示着天冬酰胺酶耐药性,并且对天冬酰胺酶与 GSK3α 抑制剂的敏感性。我们提出,GSK3α 体的形成提供了一种细胞机制,以最大化蛋白酶体蛋白降解在氨基酸饥饿时的催化效率,这是癌细胞对天冬酰胺酶耐药性的一种适应性反应。

相似文献

1
Supramolecular assembly of GSK3α as a cellular response to amino acid starvation.
Mol Cell. 2022 Aug 4;82(15):2858-2870.e8. doi: 10.1016/j.molcel.2022.05.025. Epub 2022 Jun 21.
3
Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias.
Cancer Cell. 2019 Apr 15;35(4):664-676.e7. doi: 10.1016/j.ccell.2019.03.004.
4
Exploiting the Therapeutic Interaction of WNT Pathway Activation and Asparaginase for Colorectal Cancer Therapy.
Cancer Discov. 2020 Nov;10(11):1690-1705. doi: 10.1158/2159-8290.CD-19-1472. Epub 2020 Jul 23.
5
Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7776-E7785. doi: 10.1073/pnas.1805523115. Epub 2018 Jul 30.
6
Amino acid control of asparagine synthetase: relation to asparaginase resistance in human leukemia cells.
Am J Physiol. 1997 May;272(5 Pt 1):C1691-9. doi: 10.1152/ajpcell.1997.272.5.C1691.
8
The eIF2 kinase GCN2 is essential for the murine immune system to adapt to amino acid deprivation by asparaginase.
J Nutr. 2010 Nov;140(11):2020-7. doi: 10.3945/jn.110.129197. Epub 2010 Sep 22.
9

引用本文的文献

1
Epichaperomes: redefining chaperone biology and therapeutic strategies in complex diseases.
RSC Chem Biol. 2025 Mar 19;6(5):678-698. doi: 10.1039/d5cb00010f. eCollection 2025 May 8.
3
SOD2 is a regulator of proteasomal degradation promoting an adaptive cellular starvation response.
Cell Rep. 2025 Apr 22;44(4):115434. doi: 10.1016/j.celrep.2025.115434. Epub 2025 Mar 24.
4
Enhancing Leukemia Treatment: The Role of Combined Therapies Based on Amino Acid Starvation.
Cancers (Basel). 2024 Mar 16;16(6):1171. doi: 10.3390/cancers16061171.

本文引用的文献

1
Exploiting the Therapeutic Interaction of WNT Pathway Activation and Asparaginase for Colorectal Cancer Therapy.
Cancer Discov. 2020 Nov;10(11):1690-1705. doi: 10.1158/2159-8290.CD-19-1472. Epub 2020 Jul 23.
2
Molecular logic of mTORC1 signalling as a metabolic rheostat.
Nat Metab. 2019 Mar;1(3):321-333. doi: 10.1038/s42255-019-0038-7. Epub 2019 Mar 4.
3
Systematic quantitative analysis of ribosome inventory during nutrient stress.
Nature. 2020 Jul;583(7815):303-309. doi: 10.1038/s41586-020-2446-y. Epub 2020 Jul 1.
4
ZBTB1 Regulates Asparagine Synthesis and Leukemia Cell Response to L-Asparaginase.
Cell Metab. 2020 Apr 7;31(4):852-861.e6. doi: 10.1016/j.cmet.2020.03.008.
5
Stress- and ubiquitylation-dependent phase separation of the proteasome.
Nature. 2020 Feb;578(7794):296-300. doi: 10.1038/s41586-020-1982-9. Epub 2020 Feb 5.
6
mTOR at the nexus of nutrition, growth, ageing and disease.
Nat Rev Mol Cell Biol. 2020 Apr;21(4):183-203. doi: 10.1038/s41580-019-0199-y. Epub 2020 Jan 14.
7
Emerging roles of GSK-3α in pathophysiology: Emphasis on cardio-metabolic disorders.
Biochim Biophys Acta Mol Cell Res. 2020 Feb;1867(2):118616. doi: 10.1016/j.bbamcr.2019.118616. Epub 2019 Nov 27.
8
The landscape of cancer cell line metabolism.
Nat Med. 2019 May;25(5):850-860. doi: 10.1038/s41591-019-0404-8. Epub 2019 May 8.
9
Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias.
Cancer Cell. 2019 Apr 15;35(4):664-676.e7. doi: 10.1016/j.ccell.2019.03.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验