Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
Methods Mol Biol. 2022;2529:327-403. doi: 10.1007/978-1-0716-2481-4_16.
Chemical modification of histone proteins by methylation plays a central role in chromatin regulation by recruiting epigenetic "readers" via specialized binding domains. Depending on the degree of methylation, the exact modified amino acid, and the associated reader proteins histone methylations are involved in the regulation of all DNA-based processes, such as transcription, DNA replication, and DNA repair. Here we present methods to identify histone methylation readers using a mass spectrometry-linked nucleosome affinity purification approach. We provide detailed protocols for the generation of semisynthetic methylated histones, their assembly into biotinylated nucleosomes, and the identification of methylation-specific nucleosome-interacting proteins from nuclear extracts via nucleosome pull-downs and label-free quantitative proteomics. Due to their versatility, these protocols allow the identification of readers of various histone methylations, and can also be adapted to different cell types and tissues, and other types of modifications.
组蛋白蛋白质的化学修饰通过甲基化在染色质调控中起着核心作用,通过专门的结合域招募表观遗传“读取器”。根据甲基化的程度、确切修饰的氨基酸以及相关的读取器蛋白,组蛋白甲基化参与了所有基于 DNA 的过程的调节,如转录、DNA 复制和 DNA 修复。在这里,我们介绍了使用基于质谱的核小体亲和纯化方法来鉴定组蛋白甲基化读取器的方法。我们提供了详细的方案,用于生成半合成甲基化组蛋白,将其组装成生物素化核小体,并通过核小体下拉和无标记定量蛋白质组学从核提取物中鉴定甲基化特异性核小体相互作用蛋白。由于其多功能性,这些方案允许鉴定各种组蛋白甲基化的读取器,并且还可以适应不同的细胞类型和组织以及其他类型的修饰。