Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America.
Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, United States of America.
PLoS Comput Biol. 2022 Jun 23;18(6):e1010159. doi: 10.1371/journal.pcbi.1010159. eCollection 2022 Jun.
Many voice disorders are the result of intricate neural and/or biomechanical impairments that are poorly understood. The limited knowledge of their etiological and pathophysiological mechanisms hampers effective clinical management. Behavioral studies have been used concurrently with computational models to better understand typical and pathological laryngeal motor control. Thus far, however, a unified computational framework that quantitatively integrates physiologically relevant models of phonation with the neural control of speech has not been developed. Here, we introduce LaDIVA, a novel neurocomputational model with physiologically based laryngeal motor control. We combined the DIVA model (an established neural network model of speech motor control) with the extended body-cover model (a physics-based vocal fold model). The resulting integrated model, LaDIVA, was validated by comparing its model simulations with behavioral responses to perturbations of auditory vocal fundamental frequency (fo) feedback in adults with typical speech. LaDIVA demonstrated capability to simulate different modes of laryngeal motor control, ranging from short-term (i.e., reflexive) and long-term (i.e., adaptive) auditory feedback paradigms, to generating prosodic contours in speech. Simulations showed that LaDIVA's laryngeal motor control displays properties of motor equivalence, i.e., LaDIVA could robustly generate compensatory responses to reflexive vocal fo perturbations with varying initial laryngeal muscle activation levels leading to the same output. The model can also generate prosodic contours for studying laryngeal motor control in running speech. LaDIVA can expand the understanding of the physiology of human phonation to enable, for the first time, the investigation of causal effects of neural motor control in the fine structure of the vocal signal.
许多语音障碍是复杂的神经和/或生物力学损伤的结果,这些损伤的机制还不太清楚。对其病因和病理生理机制的有限了解阻碍了有效的临床管理。行为研究已与计算模型一起用于更好地理解典型和病理性的喉运动控制。然而,到目前为止,还没有开发出一种将与发声相关的生理模型与言语的神经控制定量整合的统一计算框架。在这里,我们引入了 LaDIVA,这是一种具有生理基础的喉运动控制的新型神经计算模型。我们将 DIVA 模型(一种已建立的言语运动控制神经网络模型)与扩展体罩模型(一种基于物理的声带模型)相结合。由此产生的集成模型 LaDIVA 通过将其模型模拟与具有典型语音的成年人对听觉声音基本频率(fo)反馈的扰动的行为反应进行比较来验证。LaDIVA 表现出模拟不同的喉运动控制模式的能力,从短期(即反射性)和长期(即适应性)听觉反馈范式,到在言语中产生韵律轮廓。模拟表明,LaDIVA 的喉运动控制具有运动等效性的特性,即 LaDIVA 可以对反射性声音 fo 扰动进行稳健的补偿响应,而初始喉肌激活水平不同,从而导致相同的输出。该模型还可以生成韵律轮廓,用于研究言语中的喉运动控制。LaDIVA 可以扩展对人类发声生理学的理解,使我们首次能够研究神经运动控制对声音信号细微结构的因果影响。