Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.
J Am Chem Soc. 2022 Jul 20;144(28):12642-12651. doi: 10.1021/jacs.2c01065. Epub 2022 Jun 23.
Hydrogen peroxide (HO) plays an important role in various signal transduction pathways and regulates important cellular processes. However, monitoring and quantitatively assessing the distribution of HO molecules inside living cells requires a nanoscale sensor with molecular-level sensitivity. Herein, we show the first demonstration of sub-10 nm-sized fluorescent nanodiamonds (NDs) as catalysts for the decomposition of HO and the production of radical intermediates at the nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside the NDs are employed to quantify the aforementioned radicals. We believe that our method of combining the peroxidase-mimicking activities of the NDs with their intrinsic quantum sensor showcases their application as self-reporting HO sensors with molecular-level sensitivity and nanoscale spatial resolution. Given the robustness and the specificity of the sensor, our results promise a new platform for elucidating the role of HO at the cellular level.
过氧化氢(HO)在各种信号转导途径中发挥着重要作用,调节着重要的细胞过程。然而,监测和定量评估 HO 分子在活细胞内的分布需要具有分子级灵敏度的纳米级传感器。在此,我们首次展示了亚 10nm 大小的荧光纳米金刚石(NDs)作为 HO 分解和纳米尺度上自由基中间体生成的催化剂。此外,NDs 内的氮空位量子传感器用于定量上述自由基。我们相信,将 NDs 的过氧化物酶模拟活性与其内在的量子传感器相结合的方法展示了它们作为具有分子级灵敏度和纳米级空间分辨率的自报告 HO 传感器的应用。鉴于传感器的稳健性和特异性,我们的结果为阐明 HO 在细胞水平上的作用提供了一个新的平台。