Suppr超能文献

用于砷和铬的氧化还原相关修复的电活性 Fe-生物炭:不同铁/碳形态变化的独特氧化还原性质。

Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation.

机构信息

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA.

出版信息

J Hazard Mater. 2022 May 15;430:128479. doi: 10.1016/j.jhazmat.2022.128479. Epub 2022 Feb 12.

Abstract

Electroactive Fe-biochar has attracted significant attention for As(III)/Cr(VI) immobilization through redox reactions, and its performance essentially lies in the regulation of various Fe/C moieties for desired redox performance. Here, a series of Fe-biochar with distinct Fe/C speciation were rationally produced via two-step pyrolysis of iron minerals and biomass waste at 400-850 °C (BCX-Fe-Y, X and Y represented the first- and second-step pyrolysis temperature, respectively). The redox transformation of Cr(VI) and As(III) by Fe-biochar was evaluated in simulated wastewater under oxic or anoxic conditions. Results showed that more effective Cr(VI) reduction could be achieved by BCX-Fe-400, while a higher amount of As (III) was oxidized by BCX-Fe-850 under the anoxic environment. Besides, BCX-Fe-400 could generate more reactive oxygen species (e.g.,OH) by reducing the O, which enhanced the redox-related transformation of pollutants under the oxic situation. The evolving redox performance of Fe-biochar was governed by the transition of the redox state from reductive to oxidative related to the Fe/C speciation. The small-sized amorphous/low-crystalline ferrous minerals contributed to a higher electron-donating capacity (0.43-1.28 mmol g) of BCX-Fe-400. In contrast, the oxidative surface oxygen-functionalities (i.e., carboxyl and quinoid) on BCX-Fe-850 endowed a stronger electron-accepting capacity (0.71-1.39 mmol g). Moreover, the graphitic crystallites with edge-type defects and porous structure facilitated the electron transfer, leading to a higher electron efficiency of BCX-Fe-850. Overall, we unveiled the roles of both Fe and C speciation in maneuvering the redox reactivity of Fe-biochar, which can advance our rational design of electroactive Fe-biochar for redox-related environmental remediation.

摘要

电活性 Fe-生物炭通过氧化还原反应吸引了人们对 As(III)/Cr(VI)固定的极大关注,其性能主要取决于各种 Fe/C 形态以实现所需的氧化还原性能。在这里,通过两步热解铁矿和生物质废物在 400-850°C(BCX-Fe-Y,X 和 Y 分别代表第一步和第二步的热解温度)合成了一系列具有不同 Fe/C 形态的 Fe-生物炭。在有氧或缺氧条件下,利用模拟废水中的 Fe-生物炭评价了 Cr(VI)和 As(III)的氧化还原转化。结果表明,BCX-Fe-400 可以更有效地还原 Cr(VI),而在缺氧条件下,BCX-Fe-850 可以氧化更多的 As(III)。此外,BCX-Fe-400 通过还原 O 产生更多的活性氧物质(例如 OH),从而增强有氧条件下污染物的氧化还原转化。Fe-生物炭的氧化还原性能演变受 Fe/C 形态相关的氧化还原状态从还原到氧化的转变所控制。小尺寸的无定形/低结晶亚铁矿物有助于提高 BCX-Fe-400 的供电子能力(0.43-1.28 mmol g)。相比之下,BCX-Fe-850 上的氧化表面氧官能团(即羧基和醌型)赋予更强的电子接受能力(0.71-1.39 mmol g)。此外,具有边缘型缺陷和多孔结构的石墨微晶促进了电子转移,从而提高了 BCX-Fe-850 的电子效率。总体而言,我们揭示了 Fe 和 C 形态在操纵 Fe-生物炭氧化还原反应性中的作用,这可以推进我们对用于氧化还原相关环境修复的电活性 Fe-生物炭的合理设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验