Suppr超能文献

使用风险调整模型和索赔数据的肺炎住院患者队列中的诊断编码强度:一项基于美国人群的研究

Diagnostic Coding Intensity among a Pneumonia Inpatient Cohort Using a Risk-Adjustment Model and Claims Data: A U.S. Population-Based Study.

作者信息

Mishra Ruchi, Verma Himadri, Aynala Venkata Bhargavi, Arredondo Paul R, Martin John, Korvink Michael, Gunn Laura H

机构信息

School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

ITS Data Science, Premier, Inc., Charlotte, NC 28277, USA.

出版信息

Diagnostics (Basel). 2022 Jun 19;12(6):1495. doi: 10.3390/diagnostics12061495.

Abstract

Hospital payments depend on the Medicare Severity Diagnosis-Related Group's estimated cost and the set of diagnoses identified during inpatient stays. However, over-coding and under-coding diagnoses can occur for different reasons, leading to financial and clinical consequences. We provide a novel approach to measure diagnostic coding intensity, built on commonly available administrative claims data, and demonstrated through a 2019 pneumonia acute inpatient cohort (N = 182,666). A Poisson additive model (PAM) is proposed to model risk-adjusted additional coded diagnoses. Excess coding intensity per patient visit was estimated as the difference between the observed and PAM-based expected counts of secondary diagnoses upon risk adjustment by patient-level characteristics. Incidence rate ratios were extracted for patient-level characteristics and further adjustments were explored by facility-level characteristics to account for facility and geographical differences. Facility-level factors contribute substantially to explain the remaining variability in excess diagnostic coding, even upon adjusting for patient-level risk factors. This approach can provide hospitals and stakeholders with a tool to identify outlying facilities that may experience substantial differences in processes and procedures compared to peers or general industry standards. The approach does not rely on the availability of clinical information or disease-specific markers, is generalizable to other patient cohorts, and can be expanded to use other sources of information, when available.

摘要

医院支付取决于医疗保险严重程度诊断相关组的估计成本以及住院期间确定的诊断集。然而,诊断的过度编码和编码不足可能由于不同原因而发生,从而导致财务和临床后果。我们提供了一种基于常用行政索赔数据来衡量诊断编码强度的新方法,并通过2019年肺炎急性住院队列(N = 182,666)进行了演示。提出了一种泊松加法模型(PAM)来对风险调整后的额外编码诊断进行建模。通过患者层面特征进行风险调整后,将每次患者就诊的过度编码强度估计为观察到的二次诊断计数与基于PAM的预期计数之间的差异。提取患者层面特征的发病率比,并通过机构层面特征进行进一步调整,以考虑机构和地理差异。即使在调整了患者层面的风险因素之后,机构层面的因素在很大程度上有助于解释过度诊断编码中剩余的变异性。这种方法可以为医院和利益相关者提供一种工具,以识别那些与同行或一般行业标准相比,在流程和程序上可能存在显著差异的外围机构。该方法不依赖于临床信息或疾病特异性标志物的可用性,可推广到其他患者队列,并且在有可用信息时可以扩展以使用其他信息来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baea/9221672/a391f49d9c5a/diagnostics-12-01495-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验