Department of Microbe-Plant Interactions, CBIB Center for Biomolecular Interactions, Faculty of Biology and Chemistry, University of Bremen, PO Box 33 04 40, D-28334, Bremen, Germany.
New Phytol. 2022 Sep;235(6):2481-2495. doi: 10.1111/nph.18344. Epub 2022 Jul 20.
Fluorescence microscopy is common in bacteria-plant interaction studies. However, strong autofluorescence from plant tissues impedes in vivo studies on endophytes tagged with fluorescent proteins. To solve this problem, we developed a deep-learning-based approach to eliminate plant autofluorescence from fluorescence microscopy images, tested for the model endophyte Azoarcus olearius BH72 colonizing Oryza sativa roots. Micrographs from three channels (tdTomato for gene expression, green fluorescent protein (GFP) and AutoFluorescence (AF)) were processed by a neural network based approach, generating images that simulate the background autofluorescence in the tdTomato channel. After subtracting the model-generated signals from each pixel in the genuine channel, the autofluorescence in the tdTomato channel was greatly reduced or even removed. The deep-learning-based approach can be applied for fluorescence detection and quantification, exemplified by a weakly expressed, a cell-density modulated and a nitrogen-fixation gene in A. olearius. A transcriptional nifH::tdTomato fusion demonstrated stronger induction of nif genes inside roots than outside, suggesting extension of the rhizosphere effect for diazotrophs into the endorhizosphere. The pre-trained convolutional neural network model is easily applied to process other images of the same plant tissues with the same settings. This study showed the high potential of deep-learning-based approaches in image processing. With proper training data and strategies, autofluorescence in other tissues or materials can be removed for broad applications.
荧光显微镜在细菌-植物相互作用研究中很常见。然而,植物组织的强自发荧光会阻碍对用荧光蛋白标记的内生菌的活体研究。为了解决这个问题,我们开发了一种基于深度学习的方法,从荧光显微镜图像中消除植物自发荧光,并用模式内生菌 Azoarcus olearius BH72 定殖水稻根进行了测试。来自三个通道(用于基因表达的 tdTomato、绿色荧光蛋白(GFP)和自发荧光(AF))的显微图像由基于神经网络的方法进行处理,生成模拟 tdTomato 通道中背景自发荧光的图像。从真通道中的每个像素减去模型生成的信号后,tdTomato 通道中的自发荧光大大减少甚至消除。基于深度学习的方法可应用于荧光检测和定量,以 A. olearius 中表达较弱、细胞密度调制和固氮基因为例。转录 nifH::tdTomato 融合显示根内 nif 基因的诱导强于根外,这表明固氮菌的根际效应扩展到了内根际。预训练的卷积神经网络模型可以轻松应用于相同植物组织的其他图像,并使用相同的设置进行处理。本研究表明,基于深度学习的方法在图像处理中具有很高的潜力。通过适当的训练数据和策略,可以去除其他组织或材料中的自发荧光,以实现广泛的应用。