Suppr超能文献

使用 DIGEST 对疾病和基因集、聚类或子网络进行在线计算机模拟验证。

Online in silico validation of disease and gene sets, clusterings or subnetworks with DIGEST.

机构信息

Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany.

Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac247.

Abstract

As the development of new drugs reaches its physical and financial limits, drug repurposing has become more important than ever. For mechanistically grounded drug repurposing, it is crucial to uncover the disease mechanisms and to detect clusters of mechanistically related diseases. Various methods for computing candidate disease mechanisms and disease clusters exist. However, in the absence of ground truth, in silico validation is challenging. This constitutes a major hurdle toward the adoption of in silico prediction tools by experimentalists who are often hesitant to carry out wet-lab validations for predicted candidate mechanisms without clearly quantified initial plausibility. To address this problem, we present DIGEST (in silico validation of disease and gene sets, clusterings or subnetworks), a Python-based validation tool available as a web interface (https://digest-validation.net), as a stand-alone package or over a REST API. DIGEST greatly facilitates in silico validation of gene and disease sets, clusterings or subnetworks via fully automated pipelines comprising disease and gene ID mapping, enrichment analysis, comparisons of shared genes and variants and background distribution estimation. Moreover, functionality is provided to automatically update the external databases used by the pipelines. DIGEST hence allows the user to assess the statistical significance of candidate mechanisms with regard to functional and genetic coherence and enables the computation of empirical $P$-values with just a few mouse clicks.

摘要

随着新药研发达到物理和财务极限,药物重定位变得比以往任何时候都更加重要。对于基于机制的药物重定位,揭示疾病机制和检测具有机制相关性的疾病集群至关重要。存在各种用于计算候选疾病机制和疾病集群的方法。然而,在缺乏真实数据的情况下,进行计算机模拟验证是具有挑战性的。这是采用计算预测工具的一个主要障碍,实验人员往往不愿意对预测的候选机制进行湿实验室验证,除非有明确的量化初始可信度。为了解决这个问题,我们提出了 DIGEST(疾病和基因集、聚类或子网的计算验证),这是一个基于 Python 的验证工具,可作为网络界面(https://digest-validation.net)、独立软件包或通过 REST API 使用。DIGEST 通过包含疾病和基因 ID 映射、富集分析、共享基因和变体的比较以及背景分布估计的全自动管道,极大地促进了基因和疾病集、聚类或子网的计算验证。此外,还提供了功能来自动更新管道使用的外部数据库。因此,DIGEST 允许用户评估候选机制在功能和遗传一致性方面的统计显著性,并通过只需点击几下鼠标即可计算经验 $P$-值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验