文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SARS-CoV-2 细胞进入 ACE2 受体以外的途径。

SARS-CoV-2 cell entry beyond the ACE2 receptor.

机构信息

Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic, Engineering and Biotechnology, Tehran, Iran.

Division of Pulmonary, Critical Care, and Sleep Disease, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA.

出版信息

Mol Biol Rep. 2022 Nov;49(11):10715-10727. doi: 10.1007/s11033-022-07700-x. Epub 2022 Jun 26.


DOI:10.1007/s11033-022-07700-x
PMID:35754059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9244107/
Abstract

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS: A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS: The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.

摘要

背景:血管紧张素转换酶 2(ACE2)被认为是 SARS-CoV-2 的主要病毒进入位点。然而,病毒组织嗜性和高感染率与器官中 ACE2 的表达水平并不直接对应。这可能表明其他受体或辅助膜蛋白参与了 SARS-CoV-2 细胞进入。

方法和结果:在 PubMed/Medline、EMBASE 和 Cochrane Library 中进行了系统搜索,以查找报告 SARS-CoV-2 细胞进入的研究。我们使用了一组包括“细胞进入”、“表面受体”、“ACE2”和“SARS-CoV-2”的 MeSH 术语。我们回顾了截至 2022 年 2 月底以英文发表的所有选定论文。我们发现了几种受体或辅助膜蛋白(包括 CD147、NRP-1、CD26、AGTR2、Band3、KREMEN1、ASGR1、ANP、TMEM30A、CLEC4G 和 LDLRAD3)以及 ACE2,它们促进了病毒的进入和传播。红细胞表面 Band3 蛋白的表达以及与 SARS-CoV-2 S 蛋白结合的证据可能解释了 COVID19 感染期间无症状性低氧血症。包括 B.1.1.7(Alpha)、B.1.617.1(Kappa)、B.1.617.2(Delta)、B.1.617.2+(Delta+)和 B.1.1.529(Omicron)在内的 SARS-CoV-2 变体可能与这些受体具有不同的结合能力。

结论:SARS-CoV-2 的高感染率可能是由于其能够通过一组细胞表面受体进入宿主细胞。这些受体是开发 SARS-CoV-2 新型治疗药物的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/9244107/31e92fcdd05a/11033_2022_7700_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/9244107/afe2096bde3c/11033_2022_7700_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/9244107/eb4b9376d6e0/11033_2022_7700_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/9244107/31e92fcdd05a/11033_2022_7700_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/9244107/afe2096bde3c/11033_2022_7700_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/9244107/eb4b9376d6e0/11033_2022_7700_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/9244107/31e92fcdd05a/11033_2022_7700_Fig3_HTML.jpg

相似文献

[1]
SARS-CoV-2 cell entry beyond the ACE2 receptor.

Mol Biol Rep. 2022-11

[2]
Determinants of susceptibility to SARS-CoV-2 infection in murine ACE2.

J Virol. 2025-6-17

[3]
SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19.

Cochrane Database Syst Rev. 2022-6-17

[4]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

[5]
Critical amino acid residues in human ACE2 for SARS-CoV-2 spike protein binding and virus entry.

Microbiol Spectr. 2025-6-20

[6]
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.

Cochrane Database Syst Rev. 2021-9-2

[7]
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2022-7-22

[8]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[9]
Non-pharmacological measures implemented in the setting of long-term care facilities to prevent SARS-CoV-2 infections and their consequences: a rapid review.

Cochrane Database Syst Rev. 2021-9-15

[10]
Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and exacerbation of its related symptoms?: a systematic review.

Prostate Cancer Prostatic Dis. 2022-3

引用本文的文献

[1]
Impact of Obesity and Ageing on the Expression of Key Mediators of SARS-CoV-2 Infection in Human Adipose Tissue.

Int J Mol Sci. 2025-7-29

[2]
Association between Guillain-Barré syndrome and SARS-CoV-2 virus infection, including the impact of COVID-19 vaccination in the context of the development and general clinical characteristics of the disease.

J Neurovirol. 2025-7-7

[3]
Understanding the long-term interplay of SARS-CoV-2 immune and inflammatory responses with proteases in COVID-19 recovery: a longitudinal study.

Front Immunol. 2025-6-10

[4]
The Mystery of Certain Strains in the Treatment of Gastrointestinal Symptoms of COVID-19: A Review.

Microorganisms. 2025-4-19

[5]
Structural proteins of human coronaviruses: what makes them different?

Front Cell Infect Microbiol. 2024-12-6

[6]
The role of epithelial-mesenchymal transition in pulmonary fibrosis: lessons from idiopathic pulmonary fibrosis and COVID-19.

Cell Commun Signal. 2024-11-13

[7]
Unveiling the Interplay-Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2.

Biology (Basel). 2024-10-16

[8]
A short story of long COVID.

Wien Klin Wochenschr. 2024-11

[9]
Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2.

Curr Microbiol. 2024-8-20

[10]
Cryo-electron microscopy in the study of virus entry and infection.

Front Mol Biosci. 2024-7-24

本文引用的文献

[1]
Omicron entry route.

Nat Rev Immunol. 2022-3

[2]
Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients.

N Engl J Med. 2022-1-27

[3]
Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients.

N Engl J Med. 2022-2-10

[4]
Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike.

iScience. 2022-1-21

[5]
Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2.

Cell Res. 2022-1

[6]
Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants.

Science. 2021-12-24

[7]
An oral SARS-CoV-2 M inhibitor clinical candidate for the treatment of COVID-19.

Science. 2021-12-24

[8]
Possible Link between Higher Transmissibility of Alpha, Kappa and Delta Variants of SARS-CoV-2 and Increased Structural Stability of Its Spike Protein and hACE2 Affinity.

Int J Mol Sci. 2021-8-24

[9]
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion.

Nature. 2021-11

[10]
Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry.

Sci China Life Sci. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索