Suppr超能文献

具有复杂设计结构的扩展多变量概化理论

Extended Multivariate Generalizability Theory With Complex Design Structures.

作者信息

Brennan Robert L, Kim Stella Y, Lee Won-Chan

机构信息

The University of Iowa, Iowa City, USA.

The University of North Carolina at Charlotte, USA.

出版信息

Educ Psychol Meas. 2022 Aug;82(4):617-642. doi: 10.1177/00131644211049746. Epub 2021 Nov 14.

Abstract

This article extends multivariate generalizability theory (MGT) to tests with different random-effects designs for each level of a fixed facet. There are numerous situations in which the design of a test and the resulting data structure are not definable by a single design. One example is mixed-format tests that are composed of multiple-choice and free-response items, with the latter involving variability attributable to both items and raters. In this case, two distinct designs are needed to fully characterize the design and capture potential sources of error associated with each item format. Another example involves tests containing both testlets and one or more stand-alone sets of items. Testlet effects need to be taken into account for the testlet-based items, but not the stand-alone sets of items. This article presents an extension of MGT that faithfully models such complex test designs, along with two real-data examples. Among other things, these examples illustrate that estimates of error variance, error-tolerance ratios, and reliability-like coefficients can be biased if there is a mismatch between the user-specified universe of generalization and the complex nature of the test.

摘要

本文将多变量概化理论(MGT)扩展到针对固定侧面每个水平具有不同随机效应设计的测试。在许多情况下,测试的设计以及由此产生的数据结构无法由单一设计来定义。一个例子是混合格式测试,它由多项选择题和自由回答题组成,后者涉及可归因于题目和评分者的变异性。在这种情况下,需要两种不同的设计来全面描述该设计并捕捉与每种题目格式相关的潜在误差来源。另一个例子涉及包含题组和一个或多个独立题目集的测试。对于基于题组的题目需要考虑题组效应,但对于独立题目集则不需要。本文提出了MGT的一种扩展,它能如实地对这种复杂的测试设计进行建模,并给出了两个实际数据示例。这些示例尤其表明,如果用户指定的概化全域与测试的复杂性质不匹配,误差方差、容错率和类可靠性系数的估计可能会有偏差。

相似文献

1
Extended Multivariate Generalizability Theory With Complex Design Structures.
Educ Psychol Meas. 2022 Aug;82(4):617-642. doi: 10.1177/00131644211049746. Epub 2021 Nov 14.
2
An Extension of Testlet-Based Equating to the Polytomous Testlet Response Theory Model.
Front Psychol. 2022 Jan 12;12:743362. doi: 10.3389/fpsyg.2021.743362. eCollection 2021.
3
Testlet-Based Multidimensional Adaptive Testing.
Front Psychol. 2016 Nov 18;7:1758. doi: 10.3389/fpsyg.2016.01758. eCollection 2016.
5
Polytomous Testlet Response Models for Technology-Enhanced Innovative Items: Implications on Model Fit and Trait Inference.
Educ Psychol Meas. 2022 Aug;82(4):811-838. doi: 10.1177/00131644211032261. Epub 2021 Aug 2.
6
A generalizability study of the Norwegian version of KINDL in a sample of healthy adolescents.
Qual Life Res. 2008 Feb;17(1):87-93. doi: 10.1007/s11136-007-9289-y. Epub 2007 Dec 11.
7
Multidimensional nonadditivity in one-facet g-theory designs: A profile analytic approach.
Psychol Methods. 2023 Jun;28(3):651-663. doi: 10.1037/met0000452. Epub 2022 Jan 10.
8
Improving QST Reliability--More Raters, Tests, or Occasions? A Multivariate Generalizability Study.
J Pain. 2015 May;16(5):454-62. doi: 10.1016/j.jpain.2015.01.476. Epub 2015 Feb 13.
9
F-type testlets and the effects of feedback and case-specificity.
Acad Med. 2011 Oct;86(10 Suppl):S55-8; quiz S58. doi: 10.1097/ACM.0b013e31822a6aa2.
10
Computerized adaptive testing for testlet-based innovative items.
Br J Math Stat Psychol. 2022 Feb;75(1):136-157. doi: 10.1111/bmsp.12252. Epub 2021 Aug 30.

引用本文的文献

3
Customizing Bayesian multivariate generalizability theory to mixed-format tests.
Behav Res Methods. 2024 Oct;56(7):8080-8090. doi: 10.3758/s13428-024-02472-7. Epub 2024 Jul 29.

本文引用的文献

1
Methods for Evaluating Composite Reliability, Classification Consistency, and Classification Accuracy for Mixed-Format Licensure Tests.
Appl Psychol Meas. 2015 Jun;39(4):314-329. doi: 10.1177/0146621614563067. Epub 2014 Dec 22.
2
A Bayesian approach to estimating variance components within a multivariate generalizability theory framework.
Behav Res Methods. 2018 Dec;50(6):2193-2214. doi: 10.3758/s13428-017-0986-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验