Suppr超能文献

用户向在线社交网络贡献内容的决策的神经语义预测。

Neuro-semantic prediction of user decisions to contribute content to online social networks.

作者信息

Cleveland Pablo, Rios Sebastian A, Aguilera Felipe, Graña Manuel

机构信息

Business Intelligence Research Center, Universidad de Chile, Beauchef 851, P.O. Box 8370459, Santiago, Chile.

Industrial Engineering Department, Universidad de Chile, Beauchef 851, Santiago, Chile.

出版信息

Neural Comput Appl. 2022;34(19):16717-16738. doi: 10.1007/s00521-022-07307-0. Epub 2022 Jun 22.

Abstract

Understanding at microscopic level the generation of contents in an online social network (OSN) is highly desirable for an improved management of the OSN and the prevention of undesirable phenomena, such as online harassment. Content generation, i.e., the decision to post a contributed content in the OSN, can be modeled by neurophysiological approaches on the basis of unbiased semantic analysis of the contents already published in the OSN. This paper proposes a neuro-semantic model composed of (1) an extended leaky competing accumulator (ELCA) as the neural architecture implementing the user concurrent decision process to generate content in a conversation thread of a virtual community of practice, and (2) a semantic modeling based on the topic analysis carried out by a latent Dirichlet allocation (LDA) of both users and conversation threads. We use the similarity between the user and thread semantic representations to built up the model of the interest of the user in the thread contents as the stimulus to contribute content in the thread. The semantic interest of users in discussion threads are the external inputs for the ELCA, i.e., the external value assigned to each choice.. We demonstrate the approach on a dataset extracted from a real life web forum devoted to fans of tinkering with musical instruments and related devices. The neuro-semantic model achieves high performance predicting the content posting decisions (average score 0.61) improving greatly over well known machine learning approaches, namely random forest and support vector machines (average scores 0.19 and 0.21).

摘要

从微观层面理解在线社交网络(OSN)中内容的生成,对于改善OSN管理和预防诸如网络骚扰等不良现象极为重要。内容生成,即在OSN中发布所贡献内容的决策,可以基于对OSN中已发布内容的无偏语义分析,通过神经生理学方法进行建模。本文提出了一种神经语义模型,该模型由(1)扩展泄漏竞争累加器(ELCA)组成,作为实现用户在虚拟实践社区的对话线程中生成内容的并发决策过程的神经架构,以及(2)基于潜在狄利克雷分配(LDA)对用户和对话线程进行主题分析的语义建模。我们利用用户与线程语义表示之间的相似性,建立用户对线程内容的兴趣模型,作为在该线程中贡献内容的刺激因素。用户在讨论线程中的语义兴趣是ELCA的外部输入,即分配给每个选择的外部值。我们在从一个致力于乐器和相关设备修补爱好者的真实网络论坛中提取的数据集上展示了该方法。该神经语义模型在预测内容发布决策方面表现出色(平均得分0.61),比著名的机器学习方法(即随机森林和支持向量机,平均得分分别为0.19和0.21)有了很大改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d84/9214480/5614072535ef/521_2022_7307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验