Suppr超能文献

基于经典分离株的 MALDI-TOF MS 数据库的自动鉴定。

Automatic Identification of MALDI-TOF MS Database Using Classical Species Isolates.

机构信息

Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China.

College of Basic Sciences, Tianjin Agricultural University, Tianjin 300384, China.

出版信息

Comput Math Methods Med. 2022 Jun 15;2022:1679951. doi: 10.1155/2022/1679951. eCollection 2022.

Abstract

OBJECTIVE

To evaluate and expand the automatic identification and clustering of clinical species by MALDI-TOF MS.

METHODS

Twenty-eight field isolated strains, identified by whole-gene sequencing analysis, were analyzed by MALDI-TOF MS, and the spectra obtained were used to replenish the internal database of the manufacturer. To evaluate and expand the robustness of the database, MALDI-TOF MS identified 91 clinical isolates (except those used for implementation). A distance tree based on mass spectrometry data is constructed to confirm similarity and clusters of each clinical species by using the MALDI Biotyper 3.1 software.

RESULTS

In this research, when we used the implemented Bruker Daltonics database in our laboratory, 91 clinical isolates were identified at the genus level (100%) and 93.4% were identified at the species level (85/91). We performed proteomics analysis and divided these 91 isolates into cluster I (2.2%) and cluster II (97.8%). The largest group is cluster II ( = 89 isolates), which has been divided into two subclusters. Trees created by analyzing the protein mass spectra of the three species of the clinical isolates reflected their classification.

CONCLUSION

MALDI-TOF MS may present an attractive alternative to automatically confirm and cluster the fastidious bacteria difficult to culture. Extension of identification of the MALDI-TOF MS database is viably fast, more efficient, and alternative to conventional methods in confirming the classical Bordetella species. This strategy could promote the epidemiological and taxonomic research of this important pathogen.

摘要

目的

评估和扩展 MALDI-TOF MS 对临床 种的自动识别和聚类。

方法

对 28 株经全基因测序分析鉴定的田间分离株进行 MALDI-TOF MS 分析,获得的谱图用于补充制造商的内部数据库。为了评估和扩展数据库的稳健性,MALDI-TOF MS 鉴定了 91 株临床分离株(除用于实施的分离株外)。基于质谱数据构建距离树,使用 MALDI Biotyper 3.1 软件确认每个临床 种的相似性和聚类。

结果

在本研究中,当我们在实验室中使用实施的 Bruker Daltonics 数据库时,91 株临床分离株在属水平(100%)和种水平(93.4%(85/91))得到鉴定。我们进行了蛋白质组学分析,将这 91 株分离株分为群集 I(2.2%)和群集 II(97.8%)。最大的组是群集 II(=89 株),已分为两个亚群。通过分析三种临床分离株的蛋白质质荷比谱创建的树反映了它们的分类。

结论

MALDI-TOF MS 可能是一种有吸引力的替代方法,可以自动确认和聚类难以培养的挑剔细菌。MALDI-TOF MS 数据库的扩展鉴定是可行的,比传统方法更有效,是确认经典博德特氏菌属的替代方法。该策略可以促进对这种重要病原体的流行病学和分类学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f38d/9217575/3c5da08811a2/CMMM2022-1679951.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验