Suppr超能文献

基于时空解析网络的刑事司法系统动态轨迹建模

Spatio-temporal parse network-based trajectory modeling on the dynamics of criminal justice system.

作者信息

Yu Han, Jiang Shanhe, Huang Hong

机构信息

Department of Applied Statistics and Research Methods, University of Northern Colorado, Greeley, CO, USA.

Department of Criminal Justice, Wayne State University, Detroit, MI, USA.

出版信息

J Appl Stat. 2021 Feb 16;49(8):1979-2000. doi: 10.1080/02664763.2021.1887101. eCollection 2022.

Abstract

We extend the existing group-based trajectory modeling by proposing the network-based trajectory modeling based on judicious design and analysis of a spatio-temporal parse network (STPN) as a representation of neighborhood structure that evolves in time. The STPN offers a principled qualitative specification for an explicit paradigm framework to deal with complex real-world problems. The framework is completed by developing a quantitative specification of latent field representation to merge seamlessly on or alongside the established STPN via hierarchical modeling. The models adopt spatial random effects to characterize the heterogeneity and autocorrelation over the locations where nonlinear trajectories were observed. The trajectories are then investigated in the presence of the operational constraints of the dependence structure induced by the spatial and temporal dimensions. With the framework, complex developmental trajectory problems can be discerned, communicated, diagnosed and modeled in a relatively simple way that interpretation is accessible to nontechnical audiences and quickly comprehensible to technically sophisticated audiences. The proposed modeling is applied to address the challenges of the trajectory modeling of nonlinear dynamics arising from a motivating criminal justice empirical process.

摘要

我们通过提出基于网络的轨迹建模来扩展现有的基于群体的轨迹建模,该建模基于对时空解析网络(STPN)的审慎设计和分析,STPN作为随时间演变的邻域结构的一种表示。STPN为处理复杂现实世界问题的显式范式框架提供了一个有原则的定性规范。通过开发潜在场表示的定量规范,通过分层建模在已建立的STPN上或与之无缝合并,从而完善该框架。这些模型采用空间随机效应来表征在观察到非线性轨迹的位置上的异质性和自相关性。然后,在由空间和时间维度引起的依赖结构的操作约束存在的情况下研究这些轨迹。借助该框架,复杂的发展轨迹问题可以以一种相对简单的方式被识别、交流、诊断和建模,非技术受众可以理解其解释,技术精湛的受众也能快速理解。所提出的建模方法被应用于应对源于一个具有启发性的刑事司法实证过程的非线性动力学轨迹建模的挑战。

相似文献

1
Spatio-temporal parse network-based trajectory modeling on the dynamics of criminal justice system.
J Appl Stat. 2021 Feb 16;49(8):1979-2000. doi: 10.1080/02664763.2021.1887101. eCollection 2022.
2
Cross-Camera Trajectories Help Person Retrieval in a Camera Network.
IEEE Trans Image Process. 2023;32:3806-3820. doi: 10.1109/TIP.2023.3290515. Epub 2023 Jul 12.
3
Group-based trajectory modeling: an overview.
Ann Nutr Metab. 2014;65(2-3):205-10. doi: 10.1159/000360229. Epub 2014 Nov 18.
4
Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data.
Accid Anal Prev. 2023 Oct;191:107203. doi: 10.1016/j.aap.2023.107203. Epub 2023 Jul 3.
5
Modeling default mode network patterns via a universal spatio-temporal brain attention skip network.
Neuroimage. 2024 Feb 15;287:120522. doi: 10.1016/j.neuroimage.2024.120522. Epub 2024 Jan 21.
7
Traffic Agents Trajectory Prediction Based on Spatial-Temporal Interaction Attention.
Sensors (Basel). 2023 Sep 12;23(18):7830. doi: 10.3390/s23187830.
8
Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China.
Int J Environ Res Public Health. 2016 Mar 7;13(3):291. doi: 10.3390/ijerph13030291.
9
A nonlinear mixed-effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example.
Ecol Evol. 2019 Aug 15;9(18):10225-10240. doi: 10.1002/ece3.5543. eCollection 2019 Sep.
10
A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study.
BMC Med Inform Decis Mak. 2014 Dec 5;14:108. doi: 10.1186/s12911-014-0108-4.

引用本文的文献

1
Temporal dynamics for areal unit-based co-occurrence COVID-19 trajectories.
AIMS Public Health. 2022 Oct 14;9(4):703-717. doi: 10.3934/publichealth.2022049. eCollection 2022.
2
Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey.
Int J Environ Res Public Health. 2022 Jul 22;19(15):8886. doi: 10.3390/ijerph19158886.

本文引用的文献

1
An intuitive Bayesian spatial model for disease mapping that accounts for scaling.
Stat Methods Med Res. 2016 Aug;25(4):1145-65. doi: 10.1177/0962280216660421.
2
Group-based trajectory modeling: an overview.
Ann Nutr Metab. 2014;65(2-3):205-10. doi: 10.1159/000360229. Epub 2014 Nov 18.
3
Group-Based Trajectory Modeling (Nearly) Two Decades Later.
J Quant Criminol. 2010 Dec;26(4):445-453. doi: 10.1007/s10940-010-9113-7. Epub 2010 Oct 12.
4
Trajectories of disability in the last year of life.
N Engl J Med. 2010 Apr 1;362(13):1173-80. doi: 10.1056/NEJMoa0909087.
5
Distinct trajectories of perinatal depressive symptomatology: evidence from growth mixture modeling.
Am J Epidemiol. 2009 Jan 1;169(1):24-32. doi: 10.1093/aje/kwn283. Epub 2008 Nov 10.
6
Is it important to prevent early exposure to drugs and alcohol among adolescents?
Psychol Sci. 2008 Oct;19(10):1037-44. doi: 10.1111/j.1467-9280.2008.02196.x.
7
Identifying atypical cortisol patterns in young children: The benefits of group-based trajectory modeling.
Psychoneuroendocrinology. 2009 Jan;34(1):50-61. doi: 10.1016/j.psyneuen.2008.08.014. Epub 2008 Oct 5.
8
Trajectories of childhood aggression and inattention/hyperactivity: differential effects on substance abuse in adolescence.
J Am Acad Child Adolesc Psychiatry. 2008 Oct;47(10):1158-65. doi: 10.1097/CHI.0b013e3181825a4e.
9
Developmental trajectories of criteria of nicotine dependence in adolescence.
Drug Alcohol Depend. 2008 Nov 1;98(1-2):94-104. doi: 10.1016/j.drugalcdep.2008.04.017. Epub 2008 Jul 3.
10
Female and male antisocial trajectories: from childhood origins to adult outcomes.
Dev Psychopathol. 2008 Spring;20(2):673-716. doi: 10.1017/S0954579408000333.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验