Yao Weiqi, Xu Jie, Cao Yongjie, Meng Yufeng, Wu Ziling, Zhan Liang, Wang Yanli, Zhang Yelong, Manke Ingo, Chen Nan, Yang Chao, Chen Renjie
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China.
ACS Nano. 2022 Jul 26;16(7):10783-10797. doi: 10.1021/acsnano.2c02810. Epub 2022 Jun 27.
The practical application of lithium-sulfur batteries is impeded by the polysulfide shuttling and interfacial instability of the metallic lithium anode. In this work, a twinborn ultrathin two-dimensional graphene-based mesoporous SnO/SnSe hybrid (denoted as G-mSnO/SnSe) is constructed as a polysulfide immobilizer and lithium regulator for Li-S chemistry. The as-designed G-mSnO/SnSe hybrid possesses high conductivity, strong chemical affinity (SnO), and a dynamic intercalation-conversion site (LiSnSe), inhibits shuttle behavior, provides rapid Li-intercalative transport kinetics, accelerates LiPS conversion, and decreases the decomposition energy barrier for LiS, which is evidenced by the XAS spectra, Raman, XRD, and DFT calculations. Moreover, the mesoporous G-mSnO/SnSe with lithiophilic characteristics enables homogeneous Li-ion deposition and inhibits Li dendrite growth. Therefore, Li-S batteries with a G-mSnO/SnSe separator achieve a favorable electrochemical performance, including high sulfur utilization (1544 mAh g at 0.2 C), high-rate capability (794 mAh g at 8 C), and long cycle life (extremely low attenuation rate of 0.0144% each cycle at 5 C over 2000 cycles). Encouragingly, a 1.6 g S/Ah-level pouch cell realizes a high energy density of up to 359 Wh kg under a lean E/S usage of 3.0 μL mg. This work sheds light on the design roadmap for tackling S-cathode and Li-anode challenges simultaneously toward long-durability Li-S chemistry.
锂硫电池的实际应用受到多硫化物穿梭效应和金属锂负极界面不稳定性的阻碍。在这项工作中,构建了一种孪晶超薄二维石墨烯基介孔SnO/SnSe杂化物(表示为G-mSnO/SnSe)作为锂硫化学中的多硫化物固定剂和锂调节剂。所设计的G-mSnO/SnSe杂化物具有高导电性、强化学亲和力(SnO)和动态嵌入-转化位点(LiSnSe),抑制穿梭行为,提供快速的锂嵌入传输动力学,加速多硫化锂(LiPS)转化,并降低LiS的分解能垒,这通过X射线吸收光谱(XAS)、拉曼光谱、X射线衍射(XRD)和密度泛函理论(DFT)计算得到证实。此外,具有亲锂特性的介孔G-mSnO/SnSe能够实现均匀的锂离子沉积并抑制锂枝晶生长。因此,采用G-mSnO/SnSe隔膜的锂硫电池具有良好的电化学性能,包括高硫利用率(0.2 C时为1544 mAh g)、高倍率性能(8 C时为794 mAh g)和长循环寿命(5 C下2000次循环中每个循环的衰减率极低,仅为0.0144%)。令人鼓舞的是,一个1.6 g S/Ah级的软包电池在贫电解质/硫(E/S)用量为3.0 μL mg的情况下实现了高达359 Wh kg的高能量密度。这项工作为同时应对硫正极和锂负极挑战以实现长寿命锂硫化学提供了设计路线图。