Suppr超能文献

处理与假设策略相关的 COVID-19 并发事件的估计器。

Estimators for handling COVID-19-related intercurrent events with a hypothetical strategy.

机构信息

European Medicines Agency, Amsterdam, The Netherlands.

Hannover Medical School, Hannover, Germany.

出版信息

Pharm Stat. 2022 Nov;21(6):1258-1280. doi: 10.1002/pst.2244. Epub 2022 Jun 28.

Abstract

The COVID-19 pandemic has affected clinical trials across disease areas, raising the questions how interpretable results can be obtained from impacted studies. Applying the estimands framework, analyses may seek to estimate the treatment effect in the hypothetical absence of such impact. However, no established estimators exist. This simulation study, based on an ongoing clinical trial in patients with Tourette syndrome, compares the performance of candidate estimators for estimands including either a continuous or binary variable and applying a hypothetical strategy for COVID-19-related intercurrent events (IE). The performance is investigated in a wide range of scenarios, under the null and the alternative hypotheses, including different modeling assumptions for the effect of the IE and proportions of affected patients ranging from 10% to 80%. Bias and type I error inflation were minimal or absent for most estimators under most scenarios, with only multiple imputation- and weighting-based methods displaying a type I error inflation in some scenarios. Of more concern, all methods that discarded post-IE data displayed a sharp decrease of power proportional to the proportion of affected patients, corresponding to both a reduced precision of estimation and larger confidence intervals. The simulation study shows that de-mediation via g-estimation is a promising approach. Besides showing the best performance in our simulation study, these approaches allow to estimate the effect of the IE on the outcome and cross-compare between different studies affected by similar IEs. Importantly, the results can be extrapolated to IEs not related to COVID-19 that follow a similar causal structure.

摘要

COVID-19 大流行影响了各个疾病领域的临床试验,提出了如何从受影响的研究中获得可解释的结果的问题。应用估计目标框架,分析可能试图估计在没有这种影响的情况下的治疗效果。然而,目前还没有建立的估计量。本模拟研究基于正在进行的抽动秽语综合征患者的临床试验,比较了候选估计量对于包括连续或二分类变量的估计目标的表现,并应用了一种针对 COVID-19 相关并发事件 (IE) 的假设策略。在多种情况下,包括对 IE 效应和受影响患者比例的不同建模假设(从 10%到 80%),对估计量的性能进行了调查。在大多数情况下,对于大多数场景,大多数估计量的偏差和 I 型错误膨胀都很小或不存在,只有多重插补和加权方法在某些场景中显示出 I 型错误膨胀。更值得关注的是,所有丢弃 IE 后数据的方法都显示出与受影响患者比例成正比的功效急剧下降,这对应于估计的精度降低和置信区间增大。模拟研究表明,通过 g 估计进行去中介是一种有前途的方法。除了在我们的模拟研究中表现出最佳性能外,这些方法还允许估计 IE 对结局的影响,并对受类似 IE 影响的不同研究进行交叉比较。重要的是,结果可以外推到不相关 COVID-19 的 IE,这些 IE 遵循类似的因果结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验