Suppr超能文献

基于晶体轨道哈密顿布居的自动键合分析

Automated Bonding Analysis with Crystal Orbital Hamilton Populations.

作者信息

George Janine, Petretto Guido, Naik Aakash, Esters Marco, Jackson Adam J, Nelson Ryky, Dronskowski Richard, Rignanese Gian-Marco, Hautier Geoffroy

机构信息

Federal Institute for Materials Research and Testing, Department Materials Chemistry, Unter den Eichen 87, 12205, Berlin, Germany.

Friedrich Schiller University Jena, Institute of Condensed Matter Theory and Solid-State Optics, Max-Wien-Platz 1, 07743, Jena, Germany.

出版信息

Chempluschem. 2022 Jun 7;87(11):e202200123. doi: 10.1002/cplu.202200123.

Abstract

Understanding crystalline structures based on their chemical bonding is growing in importance. In this context, chemical bonding can be studied with the Crystal Orbital Hamilton Population (COHP), allowing for quantifying interatomic bond strength. Here we present a new set of tools to automate the calculation of COHP and analyze the results. We use the program packages VASP and LOBSTER, and the Python packages atomate and pymatgen. The analysis produced by our tools includes plots, a textual description, and key data in a machine-readable format. To illustrate those capabilities, we have selected simple test compounds (NaCl, GaN), the oxynitrides BaTaO N, CaTaO N, and SrTaO N, and the thermoelectric material Yb Mn Sb . We show correlations between bond strengths and stabilities in the oxynitrides and the influence of the Mn-Sb bonds on the magnetism in Yb Mn Sb . Our contribution enables high-throughput bonding analysis and will facilitate the use of bonding information for machine learning studies.

摘要

基于化学键理解晶体结构正变得越来越重要。在此背景下,可以通过晶体轨道哈密顿布居(COHP)研究化学键,从而能够量化原子间键强。在此,我们展示了一套新工具,用于自动计算COHP并分析结果。我们使用程序包VASP和LOBSTER,以及Python包atomate和pymatgen。我们工具所产生的分析包括图表、文本描述以及机器可读格式的关键数据。为了说明这些功能,我们选择了简单的测试化合物(NaCl、GaN)、氮氧化物BaTaO₃N、CaTaO₃N和SrTaO₃N,以及热电材料Yb₀.₇Mn₄Sb₁₂。我们展示了氮氧化物中键强与稳定性之间的相关性,以及Mn - Sb键对Yb₀.₇Mn₄Sb₁₂磁性的影响。我们的贡献实现了高通量键合分析,并将促进在机器学习研究中使用键合信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验