Department of Biotechnology, School of Engineering & Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
Department of Biotechnology & Bioinformatics, Jaypee University of IT, Solan, HP, 173215, India.
Protoplasma. 2023 Mar;260(2):453-466. doi: 10.1007/s00709-022-01786-7. Epub 2022 Jun 29.
Picrorhiza kurroa Royle ex Benth is a valuable medicinal herb of North-Western Himalayas due to presence of two major bioactive compounds, picroside-I and picroside-II used in the preparation of several hepatoprotective herbal drugs. These compounds accumulate in stolons/rhizomes; however, biosynthesized in different organs, viz., picroside-I in shoots and picroside-II in roots. As of today, no information exists on what transporters are transporting these metabolites from shoots and roots to the final storage organ, stolon, which ultimately transforms into rhizome. The ATP-binding cassette (ABC) transporters are reported to transport majority of secondary metabolites, including terpenoids in plants, therefore, we mined P. kurroa transcriptomes to identify and shortlist potential candidates. A total of 99 ABC transporter-encoding transcripts were identified in 3 differential transcriptomes, PKSS (shoots), PKSTS (stolons), and PKSR (roots) of P. kurroa, based on in silico comparative analysis and transcript abundance. 15 of these transcripts were further validated for their association using qRT-PCR in shoots, roots and stolon tissues in P. kurroa accessions varying for picroside-I and picroside-II contents. Organ-specific expression analysis revealed that PkABCA1, PkABCG1, and PkABCB5 had comparatively elevated expression in shoots; PkABCB2 and PkABCC2 in roots; PkABCB3 and PkABCC1 in stolon tissues of P. kurroa. Co-expression network analysis using ABC genes as hubs further unravelled important interactions with additional components of biosynthetic machinery. Our study has provided leads, first to our knowledge as of today, on putative ABC transporters possibly involved in long distance and local transport of picrosides in P. kurroa organs, thus opening avenues for designing a suitable genetic intervention strategy.
西藏棘豆(Picrorhiza kurroa Royle ex Benth)是喜玛拉雅山西北部一种有价值的药用植物,由于其含有两种主要的生物活性化合物,即吡咯里西啶类苦味素-I 和苦味素-II,这两种化合物被用于制备多种肝保护草药药物。这些化合物在匍匐茎/根茎中积累;然而,它们在不同的器官中生物合成,即,苦味素-I 在芽中合成,苦味素-II 在根中合成。截至目前,尚无关于哪种转运蛋白将这些代谢物从芽和根运输到最终的贮藏器官——匍匐茎,最终转化为根茎的信息。据报道,ATP 结合盒(ABC)转运蛋白可运输大多数次生代谢物,包括植物中的萜类化合物,因此,我们对西藏棘豆的转录组进行了挖掘,以识别和筛选潜在的候选物。在 3 个差异转录组(PKSS(芽)、PKSTS(匍匐茎)和 PKSR(根))中,共鉴定出 99 个 ABC 转运蛋白编码转录本,基于计算机比较分析和转录丰度。在 15 个转录本进一步验证了它们与 P. kurroa 不同吡咯里西啶-I 和吡咯里西啶-II 含量的品种中芽、根和匍匐茎组织的 qRT-PCR 关联。组织特异性表达分析显示,PkABCA1、PkABCG1 和 PkABCB5 在芽中表达水平较高;PkABCB2 和 PkABCC2 在根中表达;PkABCB3 和 PkABCC1 在 P. kurroa 的匍匐茎组织中表达。使用 ABC 基因作为枢纽的共表达网络分析进一步揭示了与生物合成机制的其他成分的重要相互作用。我们的研究提供了迄今为止在 P. kurroa 器官中可能参与吡咯里西啶远距离和局部运输的假定 ABC 转运蛋白的线索,从而为设计合适的遗传干预策略开辟了途径。