Suppr超能文献

异常情况至关重要:一种面向异常情况的医学视觉问答模型。

Anomaly Matters: An Anomaly-Oriented Model for Medical Visual Question Answering.

作者信息

Cong Fuze, Xu Shibiao, Guo Li, Tian Yinbing

出版信息

IEEE Trans Med Imaging. 2022 Nov;41(11):3385-3397. doi: 10.1109/TMI.2022.3185113. Epub 2022 Oct 27.

Abstract

Medical images contain various abnormal regions, most of which are closely related to the lesions or diseases. The abnormality or lesion is one of the major concerns during clinical practice and therefore becomes the key in answering questions about medical images. However, the recent efforts still focus on constructing a generic Visual Question Answering framework for medical-domain tasks, which is not adequate for practical medical requirements and applications. In this paper, we present two novel medical-specific modules named multiplication anomaly sensitive module and residual anomaly sensitive module to utilize weakly supervised anomaly localization information in medical Visual Question Answering. Firstly, the proposed multiplication anomaly sensitive module designed for anomaly-related questions can mask the feature of the whole image according to the anomaly location map. Secondly, the residual anomaly sensitive module could learn a flexible anomaly feature while preserving the information of the original questioned image, which is more helpful in answering anomaly-unrelated questions. Thirdly, the transformer decoder and multi-task learning strategy are combined to further enhance the question-reasoning ability and the model generalization performance. Finally, qualitative and quantitative experiments on a variety of medical datasets exhibit the superiority of the proposed approaches compared to the state-of-the-art methods.

摘要

医学图像包含各种异常区域,其中大部分与病变或疾病密切相关。异常或病变是临床实践中的主要关注点之一,因此成为回答医学图像相关问题的关键。然而,最近的努力仍集中在构建用于医学领域任务的通用视觉问答框架,这不足以满足实际医学需求和应用。在本文中,我们提出了两个新颖的医学特定模块,即乘法异常敏感模块和残差异常敏感模块,以在医学视觉问答中利用弱监督异常定位信息。首先,为与异常相关的问题设计的乘法异常敏感模块可以根据异常位置图掩盖整个图像的特征。其次,残差异常敏感模块可以在保留原始问题图像信息的同时学习灵活的异常特征,这在回答与异常无关的问题时更有帮助。第三,结合变压器解码器和多任务学习策略,进一步提高问题推理能力和模型泛化性能。最后,在各种医学数据集上进行的定性和定量实验表明,与现有方法相比,所提出的方法具有优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验