Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
Nature. 2022 Sep;609(7927):605-610. doi: 10.1038/s41586-022-04883-y. Epub 2022 Jun 29.
Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.
植物生长素是一种激素,在植物的生长和发育过程中起着核心作用,并控制着几乎所有方面。PIN 形成(PIN)家族(也称为生长素外排载体家族)中的蛋白质是这个过程的关键参与者,控制着生长素从细胞质向细胞外空间的输出。由于缺乏结构和生化数据,PIN 介导的生长素运输的分子机制尚不清楚。在这里,我们展示了生物物理分析以及拟南芥 PIN8 的三个结构:两个有和没有生长素的外向构象,以及一个与除草剂萘基邻苯二甲酰胺结合的内向构象。该结构形成同源二聚体,每个单体分为一个运输和支架结构域,具有明确的生长素结合位点。在结合位点旁边,脯氨酸-脯氨酸交叉是与运输相关的结构变化的枢轴点,我们证明它独立于质子和离子梯度,可能由生长素的负电荷驱动。这些结构和生化数据揭示了一种类似于胆酸/钠离子协同转运体、碳酸氢盐/钠离子协同转运体和钠离子/质子反向转运体的电梯式运输机制。我们的研究结果为 PIN 识别和运输生长素提供了一个全面的分子模型,将一个众所周知的运输概念框架联系并扩展,并解释了极性生长素运输的核心机制,这是植物生理学、生长和发育的核心特征。