Suppr超能文献

基于卷积神经网络的自动伤口类型分类。

Automatic Wound Type Classification with Convolutional Neural Networks.

机构信息

Institute of Cognitive Science, Osnabrück University, Germany.

Health Informatics Research Group, Osnabrück University of AS, Germany.

出版信息

Stud Health Technol Inform. 2022 Jun 29;295:281-284. doi: 10.3233/SHTI220717.

Abstract

Chronic wounds are ulcerations of the skin that fail to heal because of an underlying condition such as diabetes mellitus or venous insufficiency. The timely identification of this condition is crucial for healing. However, this identification requires expert knowledge unavailable in some care situations. Here, artificial intelligence technology may support clinicians. In this study, we explore the performance of a deep convolutional neural network to classify diabetic foot and venous leg ulcers using wound images. We trained a convolutional neural network on 863 cropped wound images. Using a hold-out test set with 80 images, the model yielded an F1-score of 0.85 on the cropped and 0.70 on the full images. This study shows promising results. However, the model must be extended in terms of wound images and wound types for application in clinical practice.

摘要

慢性伤口是由于潜在疾病(如糖尿病或静脉功能不全)导致的皮肤溃疡,无法愈合。及时识别这种情况对愈合至关重要。然而,这种识别需要一些护理情况下无法获得的专业知识。在这里,人工智能技术可能会为临床医生提供支持。在这项研究中,我们探讨了使用伤口图像对糖尿病足和静脉溃疡进行分类的深度卷积神经网络的性能。我们在 863 张裁剪后的伤口图像上训练了一个卷积神经网络。使用包含 80 张图像的预留测试集,该模型在裁剪后的图像上获得了 0.85 的 F1 分数,在完整的图像上获得了 0.70 的 F1 分数。这项研究结果很有前景。然而,该模型必须在伤口图像和伤口类型方面进行扩展,以便在临床实践中应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验