PG and Research Department of Mathematics, Ramakrishna Mission Vivekananda College, Mylapore, Chennai 600004, Tamil Nadu, India.
Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
J Adv Res. 2022 Jul;39:167-185. doi: 10.1016/j.jare.2021.10.006. Epub 2021 Oct 23.
Nanofluids are considered a better alternative to conventional fluids in many industrial situations and unfolding new opportunities for various applications owing to the optical and thermal properties of additive nanosized materials.
In this study, the thermal and hydraulic characteristics of a Casson-based (sodium alginate) multiwall carbon nanotube (MWCNT) nanofluid were computationally investigated inside a wavy square enclosure containing a circular-shaped obstacle. The square enclosure comprised two cooled vertical walls and a wavy adiabatic top wall. The central part of the bottom wall comprised a heated wavy structure, and the remaining parts exhibited a flat and adiabatic structure.
The Navier-Stokes (N-S) equations and boundary conditions were established using the non-Newtonian Casson fluid model and Rosseland thermal radiation. The present problem was numerically simulated using the Galerkin finite element method for three types of obstacles, namely, adiabatic, hot, and cold. The impacts of Casson parameter (0.001 ≤ β ≤ 0.1), Rayleigh number (10 ≤ Ra ≤ 10), nanoparticle volume fraction (0.01 ≤ φ ≤ 0.1) and radiation parameter (1 ≤ Rd ≤ 4) are analysed. A numerical code validation was performed using the available benchmark results.
The characteristics of the convective radiation heat transport were clearly analyzed through the stream function and isotherm plots. For all types of obstacles, the mean Nusselt number along the heated wavy wall increased with the Casson parameter, MWCNT volume fraction, Rayleigh number, and radiation parameter.
The heat and flow characteristics of a Casson-based MWCNT nanofluid inside a wavy square enclosure were investigated. The mean Nusselt number was higher (lower) in the presence of cold (hot) obstacles.
在许多工业情况下,纳米流体被认为是传统流体的更好替代品,由于添加纳米材料的光学和热性能,为各种应用开辟了新的机会。
本研究在一个包含圆形障碍物的波状方形腔内,计算了基于 Casson(海藻酸钠)的多壁碳纳米管(MWCNT)纳米流体的热工水力特性。方形腔由两个冷却的垂直壁和一个波状绝热顶壁组成。底部壁的中心部分包括一个加热的波状结构,其余部分为平壁和绝热壁。
使用非牛顿 Casson 流体模型和 Rosseland 热辐射建立了纳维-斯托克斯(N-S)方程和边界条件。本问题采用 Galerkin 有限元法进行数值模拟,障碍物类型有三种,分别为绝热、热和冷。分析了 Casson 参数(0.001 ≤ β ≤ 0.1)、Rayleigh 数(10 ≤ Ra ≤ 10)、纳米颗粒体积分数(0.01 ≤ φ ≤ 0.1)和辐射参数(1 ≤ Rd ≤ 4)的影响。使用可用的基准结果对数值代码进行了验证。
通过流函数和等温线图清楚地分析了对流辐射热传输的特性。对于所有类型的障碍物,沿加热的波状壁的平均努塞尔数随 Casson 参数、MWCNT 体积分数、Rayleigh 数和辐射参数的增加而增加。
研究了波状方形腔内基于 Casson 的 MWCNT 纳米流体的热工水力特性。存在冷(热)障碍物时,平均努塞尔数较高(较低)。