Suppr超能文献

基于连续介质力学的 FRAP 分析应力纤维的化学机械行为。

Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP.

机构信息

Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.

Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.

出版信息

Biophys J. 2022 Aug 2;121(15):2921-2930. doi: 10.1016/j.bpj.2022.06.032. Epub 2022 Jun 30.

Abstract

Fluorescence recovery after photobleaching (FRAP) is a common technique to analyze the turnover of molecules in living cells. Numerous physicochemical models have been developed to quantitatively evaluate the rate of turnover driven by chemical reaction and diffusion that occurs in a few seconds to minutes. On the other hand, they have limitations in interpreting long-term FRAP responses where intracellular active movement inevitably provides target molecular architectures with additional effects other than chemical reaction and diffusion, namely directed transport and structural deformation. To overcome the limitations, we develop a continuum mechanics-based model that allows for decoupling FRAP response into the intrinsic turnover rate and subcellular mechanical characteristics such as displacement vector and strain tensor. Our approach was validated using fluorescently labeled β-actin in an actomyosin-mediated contractile apparatus called stress fibers, revealing spatially distinct patterns of the multi-physicochemical events, in which the turnover rate, which represents effective off-rate of β-actin, was significantly higher at the center of the cell. We also found that the turnover rate is negatively correlated with the rate of displacement or velocity along stress fibers but, interestingly, not with the absolute magnitude of strain. Moreover, stress fibers are subjected to centripetal flow that is facilitated by the circulation of actin molecules. Taken together, this novel framework for long-term FRAP analysis allows for unveiling the contribution of overlooked microscopic mechanics to molecular turnover in living cells.

摘要

荧光漂白后恢复(FRAP)是一种分析活细胞中分子周转率的常用技术。已经开发了许多物理化学模型,以定量评估由化学反应和扩散驱动的周转率,这些反应和扩散在几秒钟到几分钟内发生。另一方面,它们在解释长期 FRAP 响应方面存在局限性,在长期 FRAP 响应中,细胞内的主动运动不可避免地会对靶分子结构产生除化学反应和扩散之外的额外影响,即定向运输和结构变形。为了克服这些局限性,我们开发了一种基于连续介质力学的模型,该模型允许将 FRAP 响应解耦为固有周转率和亚细胞力学特性,如位移向量和应变张量。我们的方法使用荧光标记的肌动蛋白在肌动球蛋白介导的收缩装置(称为应力纤维)中进行了验证,揭示了多物理化学事件的空间上不同的模式,其中周转率,代表β-肌动蛋白的有效失活率,在细胞中心显著更高。我们还发现,周转率与沿应力纤维的位移或速度的速率呈负相关,但有趣的是,与应变的绝对值无关。此外,应力纤维受到由肌动蛋白分子循环促进的向心流的影响。总之,这种用于长期 FRAP 分析的新框架允许揭示被忽视的微观力学对活细胞中分子周转率的贡献。

相似文献

1
Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP.
Biophys J. 2022 Aug 2;121(15):2921-2930. doi: 10.1016/j.bpj.2022.06.032. Epub 2022 Jun 30.
2
Long-Term Fluorescence Recovery After Photobleaching (FRAP).
Methods Mol Biol. 2023;2600:311-322. doi: 10.1007/978-1-0716-2851-5_21.
3
CM-FRAP-Continuum Mechanics-Based Fluorescence Recovery After Photobleaching.
Curr Protoc. 2023 Jan;3(1):e655. doi: 10.1002/cpz1.655.
6
Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM-FRAP.
Small. 2019 Oct;15(40):e1902202. doi: 10.1002/smll.201902202. Epub 2019 Aug 16.
7
A mathematical model of actin filament turnover for fitting FRAP data.
Eur Biophys J. 2010 Mar;39(4):669-77. doi: 10.1007/s00249-009-0558-2. Epub 2009 Nov 18.
8
Determining the domain-level reaction-diffusion properties of an actin-binding protein transgelin-2 within cells.
Exp Cell Res. 2021 Jul 1;404(1):112619. doi: 10.1016/j.yexcr.2021.112619. Epub 2021 May 6.
9
Probing the mechanism of incorporation of fluorescently labeled actin into stress fibers.
J Cell Biol. 1986 Mar;102(3):1074-84. doi: 10.1083/jcb.102.3.1074.

引用本文的文献

1
Intracellular Macromolecular Crowding within Individual Stress Fibers Analyzed by Fluorescence Correlation Spectroscopy.
Cell Mol Bioeng. 2024 Jun 7;17(3):165-176. doi: 10.1007/s12195-024-00803-4. eCollection 2024 Jun.

本文引用的文献

2
Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application.
ACS Biomater Sci Eng. 2022 Mar 14;8(3):1028-1048. doi: 10.1021/acsbiomaterials.1c01422. Epub 2022 Feb 24.
3
Determining the domain-level reaction-diffusion properties of an actin-binding protein transgelin-2 within cells.
Exp Cell Res. 2021 Jul 1;404(1):112619. doi: 10.1016/j.yexcr.2021.112619. Epub 2021 May 6.
4
Time-varying mobility and turnover of actomyosin ring components during cytokinesis in .
Mol Biol Cell. 2021 Feb 1;32(3):237-246. doi: 10.1091/mbc.E20-09-0588. Epub 2020 Dec 16.
5
What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?
Biomech Model Mechanobiol. 2021 Feb;20(1):155-166. doi: 10.1007/s10237-020-01375-8. Epub 2020 Aug 10.
6
Anomalous Diffusion Characterization by Fourier Transform-FRAP with Patterned Illumination.
Biophys J. 2020 Aug 18;119(4):737-748. doi: 10.1016/j.bpj.2020.07.013. Epub 2020 Jul 24.
7
Helical structure of actin stress fibers and its possible contribution to inducing their direction-selective disassembly upon cell shortening.
Biomech Model Mechanobiol. 2020 Apr;19(2):543-555. doi: 10.1007/s10237-019-01228-z. Epub 2019 Sep 23.
8
Sliding filament and fixed filament mechanisms contribute to ring tension in the cytokinetic contractile ring.
Cytoskeleton (Hoboken). 2019 Nov;76(11-12):611-625. doi: 10.1002/cm.21558. Epub 2019 Sep 11.
9
Analysis of Active Transport by Fluorescence Recovery after Photobleaching.
Biophys J. 2017 Apr 25;112(8):1714-1725. doi: 10.1016/j.bpj.2017.02.042.
10
Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice.
Q Rev Biophys. 2015 Aug;48(3):323-87. doi: 10.1017/S0033583515000013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验