Suppr超能文献

从数字乳腺断层摄影术 mammograms 估计的肿瘤体积倍增时间可区分浸润性乳腺癌与良性病变。

Tumor volume doubling time estimated from digital breast tomosynthesis mammograms distinguishes invasive breast cancers from benign lesions.

机构信息

Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.

The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA.

出版信息

Eur Radiol. 2023 Jan;33(1):429-439. doi: 10.1007/s00330-022-08966-2. Epub 2022 Jul 2.

Abstract

OBJECTIVES

The aim of this study was to determine whether lesion size metrics on consecutive screening mammograms could predict malignant invasive carcinoma versus benign lesion outcome.

METHODS

We retrospectively reviewed suspicious screen-detected lesions confirmed by biopsy to be invasive breast cancers or benign that were visible on current and in-retrospect prior screening mammograms performed with digital breast tomosynthesis from 2017 to 2020. Four experienced radiologists recorded mammogram dates, breast density, lesion type, lesion diameter, and morphology on current and prior exams. We used logistic regression models to evaluate the association of invasive breast cancer outcome with lesion size metrics such as maximum dimension, average dimension, volume, and tumor volume doubling time (TVDT).

RESULTS

Twenty-eight patients with invasive ductal carcinoma or invasive lobular carcinoma and 40 patients with benign lesions were identified. The mean TVDT was significantly shorter for invasive breast cancers compared to benign lesions (0.84 vs. 2.5 years; p = 0.0025). Patients with a TVDT of less than 1 year were shown to have an odds ratio of invasive cancer of 6.33 (95% confidence interval, 2.18-18.43). Logistic regression adjusted for age, lesion maximum dimension, and lesion volume demonstrated that shorter TVDT was the size variable significantly associated with invasive cancer outcome.

CONCLUSION

Invasive breast cancers detected on current and in-retrospect prior screening mammograms are associated with shorter TVDT compared to benign lesions. If confirmed to be sufficiently predictive of benignity in larger studies, lesions visible on mammograms which in comparison to prior exams have longer TVDTs could potentially avoid additional imaging and/or biopsy.

KEY POINTS

• We propose tumor volume doubling time as a measure to distinguish benign from invasive breast cancer lesions. • Logistic regression results summarized the utility of the odds ratio in retrospective clinical mammography data.

摘要

目的

本研究旨在确定连续筛查乳房 X 光片中的病变大小指标是否可以预测恶性浸润性癌与良性病变的结果。

方法

我们回顾性分析了 2017 年至 2020 年期间使用数字乳腺断层合成术进行的当前和回顾性先前筛查乳房 X 光片中可见的可疑筛查检测到的经活检证实为浸润性乳腺癌或良性病变的病变。四位有经验的放射科医生记录了当前和先前检查的乳房 X 光片日期、乳房密度、病变类型、病变直径和形态。我们使用逻辑回归模型评估了病变大小指标(如最大尺寸、平均尺寸、体积和肿瘤体积倍增时间(TVDT))与浸润性乳腺癌结果的关联。

结果

共确定了 28 例浸润性导管癌或浸润性小叶癌患者和 40 例良性病变患者。与良性病变相比,浸润性乳腺癌的平均 TVDT 明显更短(0.84 年 vs. 2.5 年;p = 0.0025)。TVDT 小于 1 年的患者患有浸润性癌的优势比为 6.33(95%置信区间,2.18-18.43)。经年龄、病变最大尺寸和病变体积调整的逻辑回归显示,较短的 TVDT 是与浸润性癌症结果显著相关的大小变量。

结论

与良性病变相比,当前和回顾性先前筛查乳房 X 光片中检测到的浸润性乳腺癌与较短的 TVDT 相关。如果在更大的研究中证实对良性具有足够的预测性,那么与先前检查相比具有更长 TVDT 的乳房 X 光片上可见的病变可能可以避免额外的成像和/或活检。

关键点

  1. 我们提出肿瘤体积倍增时间作为区分良性和浸润性乳腺癌病变的一种衡量标准。

  2. 逻辑回归结果总结了在回顾性临床乳房 X 光数据中使用优势比的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验