Huang Tingting, Xu Guancheng, Ding Hui, Zhang Li, Wei Bei, Liu Xia
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Urumqi, 830017 Xinjiang, PR China; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, PR China.
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Urumqi, 830017 Xinjiang, PR China; College of Chemistry, Xinjiang University, Urumqi, 830017 Xinjiang, PR China.
J Colloid Interface Sci. 2022 Nov;625:956-964. doi: 10.1016/j.jcis.2022.06.093. Epub 2022 Jun 24.
As a kind of high-performance and cost-efficient electrocatalyst in water splitting, the transition bimetal phosphides exhibit a promising prospect. Here, the composite of cobalt molybdenum phosphide nanoparticles embedded in crosslinked nitrogen-doped carbon nanofiber (CoMoP@CL-NCNF) has been synthesized via an electrospinning process and pyrolysis treatment. As an effective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst, the CoMoP@CL-NCNF only requires the overpotentials of 81 mV and 219 mV at the current densities of 10 mA cm and 20 mA cm, respectively. Moreover, the water electrolyzer with the CoMoP@CL-NCNF as the cathode and anode catalysts requires a cell voltage of 1.59 V to reach a current density of 10 mA cm. The CoMoP@CL-NCNF also achieves the excellent stability up to 24 h for HER, OER and overall water spitting in 1.0 M KOH. The excellent catalytic activity of the CoMoP@CL-NCNF is benefits from the synergistic effect between components and the crosslinked structure of carbon nanofiber. Thus, the research provides a promising method for preparing carbon-based TMPs materials towards electrocatalysis.
作为一种用于水分解的高性能且经济高效的电催化剂,过渡双金属磷化物展现出了广阔的前景。在此,通过静电纺丝工艺和热解处理合成了嵌入交联氮掺杂碳纳米纤维中的磷化钴钼纳米颗粒复合材料(CoMoP@CL-NCNF)。作为一种有效的析氢反应(HER)和析氧反应(OER)催化剂,CoMoP@CL-NCNF在电流密度分别为10 mA cm²和20 mA cm²时,仅需要81 mV和219 mV的过电位。此外,以CoMoP@CL-NCNF作为阴极和阳极催化剂的水电解槽在电流密度达到10 mA cm²时需要1.59 V的电池电压。CoMoP@CL-NCNF在1.0 M KOH中对于HER、OER以及整体水分解也实现了长达24小时的优异稳定性。CoMoP@CL-NCNF的优异催化活性得益于各组分之间的协同效应以及碳纳米纤维的交联结构。因此,该研究为制备用于电催化的碳基过渡金属磷化物材料提供了一种有前景的方法。