Suppr超能文献

为下肢外固定术后家庭医院准备感染检测技术。

Preparing infection detection technology for hospital at home after lower limb external fixation.

作者信息

Annadatha Sowmya, Hua Qirui, Fridberg Marie, Lindstrøm Jensen Tobias, Liu Jianan, Kold Søren, Rahbek Ole, Shen Ming

机构信息

Department of Electronic Systems, Aalborg University, Aalborg, Denmark.

Aalborg University Hospital, Aalborg, Denmark.

出版信息

Digit Health. 2022 Jun 26;8:20552076221109502. doi: 10.1177/20552076221109502. eCollection 2022 Jan-Dec.

Abstract

BACKGROUND

Patients with severe bone fractures and complex bone deformities are treated by orthopedic surgeons with external fixation for several months. During this long treatment period, there is a high risk of inflammation and infection at the superficial skin area (pin site). This can develop into a devastating, sometimes fatal, and always costly condition of deep bone infection.

OBJECTIVE

For pin site infection surveillance, thermography technology could be the solution to build an objective and continuous home-based remote monitoring tool to avoid frequent nursing care and hospital visits. However, future studies of infection monitoring require a preliminary step to automate the process of locating and detecting the pin sites in thermal images reliably for temperature measurement, and this step is the aim of this study.

METHODS

This study presents an automatic approach for identifying and annotating pin sites on visible images using bounding boxes and transferring them to the corresponding thermal images for temperature measurement. The pin site is detected by applying deep learning-based object detection architecture YOLOv5 with a novel loss evaluation and regression method, control distance intersection over union. Furthermore, we address detecting pin sites in a practical environment (home setting) accurately through transfer learning.

RESULTS AND CONCLUSION

The proposed model offers the pin site detection in 1.8 ms with a high precision of 0.98 and enables temperature information extraction. Our work for automatic pin site annotation on thermography paves the way for future research on infection assessment on thermography.

摘要

背景

严重骨折和复杂骨畸形患者需接受骨科医生的外固定治疗数月。在这段漫长的治疗期间,浅表皮肤区域(针道部位)存在较高的炎症和感染风险。这可能发展成一种毁灭性的、有时甚至致命且总是代价高昂的深部骨感染状况。

目的

对于针道感染监测而言,热成像技术可能是构建一种客观且持续的居家远程监测工具的解决方案,以避免频繁的护理和医院就诊。然而,未来的感染监测研究需要一个初步步骤,即可靠地自动定位和检测热成像中的针道部位以进行温度测量,而这一步骤就是本研究的目的。

方法

本研究提出一种自动方法,用于在可见光图像上使用边界框识别和标注针道部位,并将其转移到相应的热成像图像上进行温度测量。通过应用基于深度学习的目标检测架构YOLOv5以及一种新颖的损失评估和回归方法——控制距离交并比来检测针道部位。此外,我们通过迁移学习在实际环境(家庭环境)中准确检测针道部位。

结果与结论

所提出的模型在1.8毫秒内实现针道部位检测,精度高达0.98,并能够提取温度信息。我们在热成像上进行自动针道部位标注的工作为未来热成像感染评估研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6071/9243585/c940f1323e3a/10.1177_20552076221109502-fig1.jpg

相似文献

1
Preparing infection detection technology for hospital at home after lower limb external fixation.
Digit Health. 2022 Jun 26;8:20552076221109502. doi: 10.1177/20552076221109502. eCollection 2022 Jan-Dec.
2
Intrarater Reliability of Digital Thermography in Detecting Pin Site Infection: A Proof of Concept Study.
Strategies Trauma Limb Reconstr. 2021 Jan-Apr;16(1):1-7. doi: 10.5005/jp-journals-10080-1522.
4
Automatic creation of annotations for chest radiographs based on the positional information extracted from radiographic image reports.
Comput Methods Programs Biomed. 2021 Sep;209:106331. doi: 10.1016/j.cmpb.2021.106331. Epub 2021 Aug 4.
7
Improving external fixator pin site care through user involvement: A quality improvement project.
Int J Orthop Trauma Nurs. 2024 Nov;55:101139. doi: 10.1016/j.ijotn.2024.101139. Epub 2024 Oct 10.
8
Evidence-based practice for pin site care in injured children.
Orthop Nurs. 2001 Sep-Oct;20(5):29-34. doi: 10.1097/00006416-200109000-00007.
9
Cadaveric Study of Bone Tissue Temperature During Pin Site Drilling Using Fluoroptic Thermography.
J Orthop Trauma. 2018 Aug;32(8):e315-e319. doi: 10.1097/BOT.0000000000001191.

引用本文的文献

本文引用的文献

1
Infrared Thermography in Wound Care, Surgery, and Sports Medicine: A Review.
Front Physiol. 2022 Mar 3;13:838528. doi: 10.3389/fphys.2022.838528. eCollection 2022.
2
Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review.
Adv Wound Care (New Rochelle). 2022 Dec;11(12):687-709. doi: 10.1089/wound.2021.0091. Epub 2021 Dec 20.
3
Intrarater Reliability of Digital Thermography in Detecting Pin Site Infection: A Proof of Concept Study.
Strategies Trauma Limb Reconstr. 2021 Jan-Apr;16(1):1-7. doi: 10.5005/jp-journals-10080-1522.
4
High-end versus Low-end Thermal Imaging for Detection of Arterial Perforators.
Plast Reconstr Surg Glob Open. 2020 Apr 11;8(10):e3175. doi: 10.1097/GOX.0000000000003175. eCollection 2020 Oct.
8
Object Detection With Deep Learning: A Review.
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232. doi: 10.1109/TNNLS.2018.2876865. Epub 2019 Jan 28.
10
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验