Xia Wei, Gao Quanxue, Wang Qianqian, Gao Xinbo, Ding Chris, Tao Dacheng
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):5187-5202. doi: 10.1109/TPAMI.2022.3187976. Epub 2023 Mar 7.
Despite the impressive clustering performance and efficiency in characterizing both the relationship between the data and cluster structure, most existing graph-based multi-view clustering methods still have the following drawbacks. They suffer from the expensive time burden due to both the construction of graphs and eigen-decomposition of Laplacian matrix. Moreover, none of them simultaneously considers the similarity of inter-view and similarity of intra-view. In this article, we propose a variance-based de-correlation anchor selection strategy for bipartite construction. The selected anchors not only cover the whole classes but also characterize the intrinsic structure of data. Following that, we present a tensorized bipartite graph learning for multi-view clustering (TBGL). Specifically, TBGL exploits the similarity of inter-view by minimizing the tensor Schatten p-norm, which well exploits both the spatial structure and complementary information embedded in the bipartite graphs of views. We exploit the similarity of intra-view by using the [Formula: see text]-norm minimization regularization and connectivity constraint on each bipartite graph. So the learned graph not only well encodes discriminative information but also has the exact connected components which directly indicates the clusters of data. Moreover, we solve TBGL by an efficient algorithm which is time-economical and has good convergence. Extensive experimental results demonstrate that TBGL is superior to the state-of-the-art methods. Codes and datasets are available: https://github.com/xdweixia/TBGL-MVC.
尽管在描述数据与聚类结构之间的关系时,现有基于图的多视图聚类方法在聚类性能和效率方面表现出色,但大多数方法仍存在以下缺点。由于图的构建和拉普拉斯矩阵的特征分解,它们承受着巨大的时间负担。此外,它们都没有同时考虑视图间相似性和视图内相似性。在本文中,我们提出了一种基于方差的去相关锚点选择策略用于二分图构建。所选锚点不仅覆盖了所有类别,还刻画了数据的内在结构。在此基础上,我们提出了一种用于多视图聚类的张量二分图学习方法(TBGL)。具体而言,TBGL通过最小化张量Schatten p-范数来利用视图间相似性,这很好地利用了视图二分图中嵌入的空间结构和互补信息。我们通过在每个二分图上使用[公式:见原文]-范数最小化正则化和连通性约束来利用视图内相似性。因此,学习到的图不仅能很好地编码判别信息,还具有直接指示数据聚类的精确连通分量。此外,我们通过一种高效的算法来求解TBGL,该算法节省时间且具有良好的收敛性。大量实验结果表明,TBGL优于现有最先进的方法。代码和数据集可获取:https://github.com/xdweixia/TBGL-MVC 。