Suppr超能文献

利用聚乙二醇化 PDMS-钛-金电微流控装置捕获 CTC 异质性,并通过谷胱甘肽控制温和细胞释放,极大地增强了 CTC 培养。

Greatly Enhanced CTC Culture Enabled by Capturing CTC Heterogeneity Using a PEGylated PDMS-Titanium-Gold Electromicrofluidic Device with Glutathione-Controlled Gentle Cell Release.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.

Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States.

出版信息

ACS Nano. 2022 Jul 26;16(7):11374-11391. doi: 10.1021/acsnano.2c05195. Epub 2022 Jul 7.

Abstract

The circulating tumor cells (CTCs, the root cause of cancer metastasis and poor cancer prognosis) are very difficult to culture for scale-up , which has hampered their use in cancer research/prognosis and patient-specific therapeutic development. Herein, we report a robust electromicrofluidic chip for not only efficient capture of heterogeneous (EpCAM+ and CD44+) CTCs with high purity but also glutathione-controlled gentle release of the CTCs with high efficiency and viability. This is enabled by coating the polydimethylsiloxane (PDMS) surface in the device with a 10 nm gold layer through a 4 nm titanium coupling layer, for convenient PEGylation and linkage of capture antibodies via the thiol-gold chemistry. Surprisingly, the percentage of EpCAM+ mammary CTCs can be as low as ∼35% (∼70% on average), showing that the commonly used approach of capturing CTCs with EpCAM alone may miss many EpCAM- CTCs. Furthermore, the CD44+ CTCs can be cultured to form 3D spheroids efficiently for scale-up. In contrast, the CTCs captured with EpCAM alone are poor in proliferation , consistent with the literature. By capture of the CTC heterogeneity, the percentage of stage IV patients whose CTCs can be successfully cultured/scaled up is improved from 12.5% to 68.8%. These findings demonstrate that the common practice of CTC capture with EpCAM alone misses the CTC heterogeneity including the critical CD44+ CTCs. This study may be valuable to the procurement and scale-up of heterogeneous CTCs, to facilitate the understanding of cancer metastasis and the development of cancer metastasis-targeted personalized cancer therapies conveniently via the minimally invasive liquid/blood biopsy.

摘要

循环肿瘤细胞(CTCs,癌症转移和不良预后的根本原因)非常难以大规模培养,这阻碍了它们在癌症研究/预后和患者特异性治疗开发中的应用。在此,我们报告了一种强大的电微流控芯片,不仅可以高效捕获异质性(EpCAM+和 CD44+)CTC,而且具有高纯度,还可以通过谷胱甘肽控制温和释放 CTC,效率和活力都很高。这是通过在设备中的聚二甲基硅氧烷(PDMS)表面涂覆 10nm 金层来实现的,通过 4nm 钛偶联层,方便了通过硫醇-金化学将捕获抗体进行 PEG 化和连接。令人惊讶的是,EpCAM+乳腺 CTC 的百分比可以低至约 35%(平均约为 70%),这表明单独使用 EpCAM 捕获 CTC 的常用方法可能会错过许多 EpCAM-CTC。此外,CD44+CTC 可以有效地培养形成 3D 球体进行大规模培养。相比之下,单独用 EpCAM 捕获的 CTC 增殖能力较差,这与文献一致。通过捕获 CTC 的异质性,能够成功培养/规模化的 IV 期患者的 CTC 百分比从 12.5%提高到 68.8%。这些发现表明,单独使用 EpCAM 捕获 CTC 的常见做法会错过包括关键的 CD44+CTC 在内的 CTC 异质性。这项研究对于获取和规模化异质性 CTC 可能具有重要价值,方便通过微创性的液体/血液活检来理解癌症转移和开发针对癌症转移的个性化癌症治疗。

相似文献

5
EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
Oncol Rep. 2017 Jan;37(1):77-82. doi: 10.3892/or.2016.5235. Epub 2016 Nov 8.
6
7
Dual-Aptamer-Targeted Immunomagnetic Nanoparticles to Accurately Explore the Correlations between Circulating Tumor Cells and Gastric Cancer.
ACS Appl Mater Interfaces. 2022 Feb 16;14(6):7646-7658. doi: 10.1021/acsami.1c22720. Epub 2022 Feb 1.
9
A microfluidic device for enhanced capture and high activity release of heterogeneous CTCs from whole blood.
Talanta. 2024 Jan 1;266(Pt 1):125007. doi: 10.1016/j.talanta.2023.125007. Epub 2023 Jul 29.
10
Improved detection by ensemble-decision aliquot ranking of circulating tumor cells with low numbers of a targeted surface antigen.
Anal Chem. 2015 Sep 15;87(18):9389-95. doi: 10.1021/acs.analchem.5b02241. Epub 2015 Aug 31.

引用本文的文献

1
Clinical applications of circulating tumor cells in metastasis and therapy.
J Hematol Oncol. 2025 Aug 22;18(1):80. doi: 10.1186/s13045-025-01733-y.
2
Microfluidic isolation and release of live disseminated breast tumor cells in bone marrow.
PLoS One. 2025 Mar 12;20(3):e0319392. doi: 10.1371/journal.pone.0319392. eCollection 2025.
4
Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment.
J Nanobiotechnology. 2024 Apr 12;22(1):176. doi: 10.1186/s12951-024-02432-5.
5
Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication.
Adv Sci (Weinh). 2023 Dec;10(34):e2304506. doi: 10.1002/advs.202304506. Epub 2023 Oct 9.

本文引用的文献

1
Cancer statistics, 2022.
CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12.
2
A chimeric virus-based probe unambiguously detects live circulating tumor cells with high specificity and sensitivity.
Mol Ther Methods Clin Dev. 2021 Aug 28;23:78-86. doi: 10.1016/j.omtm.2021.08.007. eCollection 2021 Dec 10.
3
Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles.
ACS Biomater Sci Eng. 2021 Jun 14;7(6):2043-2063. doi: 10.1021/acsbiomaterials.1c00083. Epub 2021 Apr 19.
4
Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression.
Br J Cancer. 2021 Jul;125(2):164-175. doi: 10.1038/s41416-021-01328-7. Epub 2021 Apr 6.
7
Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation.
Adv Sci (Weinh). 2020 Apr 28;7(11):2000259. doi: 10.1002/advs.202000259. eCollection 2020 Jun.
8
Continuous Label-Free Electronic Discrimination of T Cells by Activation State.
ACS Nano. 2020 Jul 28;14(7):8646-8657. doi: 10.1021/acsnano.0c03018. Epub 2020 Jun 25.
9
Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments.
Sci Adv. 2020 May 29;6(22):eaba6712. doi: 10.1126/sciadv.aba6712. eCollection 2020 May.
10
An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing.
ACS Nano. 2020 Jun 23;14(6):7412-7424. doi: 10.1021/acsnano.0c02953. Epub 2020 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验