蜘蛛丝增强石英增强电导光谱法用于医用口罩湿度传感。
Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing.
机构信息
Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China.
出版信息
Molecules. 2022 Jul 5;27(13):4320. doi: 10.3390/molecules27134320.
Spider silk is one of the hottest biomaterials researched currently, due to its excellent mechanical properties. This work reports a novel humidity sensing platform based on a spider silk-modified quartz tuning fork (SSM-QTF). Since spider silk is a kind of natural moisture-sensitive material, it does not demand additional sensitization. Quartz-enhanced conductance spectroscopy (QECS) was combined with the SSM-QTF to access humidity sensing sensitively. The results indicate that the resonance frequency of the SSM-QTF decreased monotonously with the ambient humidity. The detection sensitivity of the proposed SSM-QTF sensor was 12.7 ppm at 1 min. The SSM-QTF sensor showed good linearity of ~0.99. Using this sensor, we successfully measured the humidity of disposable medical masks for different periods of wearing time. The results showed that even a 20 min wearing time can lead to a >70% humidity in the mask enclosed space. It is suggested that a disposable medical mask should be changed <2 h.
蜘蛛丝是目前研究最为热门的生物材料之一,这源于其优异的机械性能。本工作报道了一种基于蜘蛛丝修饰石英音叉(SSM-QTF)的新型湿度传感平台。由于蜘蛛丝是一种天然的湿度敏感材料,因此无需额外的敏化处理。我们将石英增强电导谱(QECS)与 SSM-QTF 相结合,实现了对湿度的灵敏检测。结果表明,SSM-QTF 的共振频率随环境湿度的增加呈单调下降趋势。所提出的 SSM-QTF 传感器的检测灵敏度在 1 min 时为 12.7 ppm。SSM-QTF 传感器具有良好的线性度(约为 0.99)。使用该传感器,我们成功测量了不同佩戴时间的一次性医用口罩的湿度。结果表明,即使佩戴 20 min,口罩封闭空间内的湿度也会超过 70%。因此建议一次性医用口罩的佩戴时间应小于 2 h。
相似文献
Sensors (Basel). 2021-7-26
Sensors (Basel). 2019-12-16
Sensors (Basel). 2016-3-25
Opt Lett. 2022-9-1
引用本文的文献
本文引用的文献
Case Rep Dermatol. 2022-2-15
ACS Biomater Sci Eng. 2022-3-14
Polymers (Basel). 2021-5-29
Clin Dermatol. 2021