Sand-Jensen Kaj, Borum Jens, Møller Claus Lindskov, Baastrup-Spohr Lars
Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, 2100 København Ø, Denmark.
The Danish Environmental Protection Agency, Fejøgade 1, 4800 Nykøbing Falster, Denmark.
Plants (Basel). 2022 Jun 24;11(13):1683. doi: 10.3390/plants11131683.
Plant species often separate strongly along steep environmental gradients. Our objective was to study how coupling between plant physiology and environmental conditions shapes vegetation characteristics along a distinct hydrological gradient. We therefore investigated species photosynthesis in air and under water within a limited area from dry-as-dust to complete submergence in a nutrient-poor limestone habitat on Öland's Alvar, Sweden. We found structural and physiological adaptations of species to endure water limitation at the dry end (e.g., moss cushions and CAM-metabolism) and diffusive carbon limitation (e.g., bicarbonate use) at the submerged end of the gradient. As anticipated, mean photosynthesis in air increased 18-fold from the species-poor assembly of cushion-mosses and CAM-species on mm-thin limestone pavements to the species-rich assembly of C-3 terrestrial plants in deeper and wetter soils. A GLM-model indicated that 90% of the variation in species richness could be explained by a positive effect of soil depth, a negative effect of the duration of water cover and their interaction. In water, mean photosynthesis was highest among aquatic species, low among species and cushion mosses, and negligible among C-3 terrestrial plants. While aquatic species dried out in air, drought-resistant small species were probably competitively excluded from the more suitable terrestrial habitats on deeper soils with moderate flooding by taller species of high photosynthetic capability. In conclusion, the clear distribution of species along the steep hydrological gradient reflects distinct structural and physiological adaptations, environmental filtering and interspecific competition.
植物物种通常会沿着陡峭的环境梯度强烈分异。我们的目标是研究植物生理与环境条件之间的耦合如何塑造沿独特水文梯度的植被特征。因此,我们在瑞典厄兰岛阿尔瓦尔的贫瘠石灰岩生境中,对从尘土飞扬到完全淹没的有限区域内的物种在空气中和水下的光合作用进行了研究。我们发现物种在梯度的干旱端具有结构和生理适应性以耐受水分限制(例如,苔藓垫层和景天酸代谢),在淹没端具有扩散性碳限制(例如,利用碳酸氢盐)。正如预期的那样,空气中的平均光合作用从毫米厚石灰岩路面上物种贫乏的苔藓垫层和景天酸代谢物种组合,增加到更深且更湿润土壤中物种丰富的C-3陆生植物组合的18倍。一个广义线性模型表明,物种丰富度90%的变化可以由土壤深度的正向效应、水覆盖持续时间的负向效应及其相互作用来解释。在水中,平均光合作用在水生物种中最高,在 物种和苔藓垫层中较低,在C-3陆生植物中可忽略不计。当水生物种在空气中变干时,抗旱的小物种可能会被光合能力高的较高物种在更深且有适度洪水的更适宜陆生栖息地中竞争排除。总之,物种沿陡峭水文梯度的清晰分布反映了明显的结构和生理适应性、环境筛选和种间竞争。