文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model.

作者信息

Angelova Liliya, Daskalova Albena, Filipov Emil, Vila Xavier Monforte, Tomasch Janine, Avdeev Georgi, Teuschl-Woller Andreas H, Buchvarov Ivan

机构信息

Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shousse Blvd., 1784 Sofia, Bulgaria.

Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria.

出版信息

Polymers (Basel). 2022 Jun 25;14(13):2584. doi: 10.3390/polym14132584.


DOI:10.3390/polym14132584
PMID:35808630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9269134/
Abstract

Temporary scaffolds that mimic the extracellular matrix's structure and provide a stable substratum for the natural growth of cells are an innovative trend in the field of tissue engineering. The aim of this study is to obtain and design porous 2D fibroin-based cell matrices by femtosecond laser-induced microstructuring for future applications in muscle tissue engineering. Ultra-fast laser treatment is a non-contact method, which generates controlled porosity-the creation of micro/nanostructures on the surface of the biopolymer that can strongly affect cell behavior, while the control over its surface characteristics has the potential of directing the growth of future muscle tissue in the desired direction. The laser structured 2D thin film matrices from silk were characterized by means of SEM, EDX, AFM, FTIR, Micro-Raman, XRD, and 3D-roughness analyses. A WCA evaluation and initial experiments with murine C2C12 myoblasts cells were also performed. The results show that by varying the laser parameters, a different structuring degree can be achieved through the initial lifting and ejection of the material around the area of laser interaction to generate porous channels with varying widths and depths. The proper optimization of the applied laser parameters can significantly improve the bioactive properties of the investigated 2D model of a muscle cell matrix.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/151e9e06d9e1/polymers-14-02584-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/2ecdbc2dba9e/polymers-14-02584-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/d2e06c7868de/polymers-14-02584-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/6c6227d634e6/polymers-14-02584-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/b602a0dd206b/polymers-14-02584-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/ce99de8f6196/polymers-14-02584-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/9bdc398be607/polymers-14-02584-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/e9fd79c6ec52/polymers-14-02584-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/540afbd00126/polymers-14-02584-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/56b4d42be722/polymers-14-02584-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/fcc490f0da42/polymers-14-02584-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/151e9e06d9e1/polymers-14-02584-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/2ecdbc2dba9e/polymers-14-02584-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/d2e06c7868de/polymers-14-02584-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/6c6227d634e6/polymers-14-02584-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/b602a0dd206b/polymers-14-02584-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/ce99de8f6196/polymers-14-02584-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/9bdc398be607/polymers-14-02584-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/e9fd79c6ec52/polymers-14-02584-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/540afbd00126/polymers-14-02584-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/56b4d42be722/polymers-14-02584-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/fcc490f0da42/polymers-14-02584-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/9269134/151e9e06d9e1/polymers-14-02584-g011.jpg

相似文献

[1]
Optimizing the Surface Structural and Morphological Properties of Silk Thin Films via Ultra-Short Laser Texturing for Creation of Muscle Cell Matrix Model.

Polymers (Basel). 2022-6-25

[2]
Biomimetic Hierarchical Structuring of PLA by Ultra-Short Laser Pulses for Processing of Tissue Engineered Matrices: Study of Cellular and Antibacterial Behavior.

Polymers (Basel). 2021-8-3

[3]
Femtosecond Laser Fabrication of Engineered Functional Surfaces Based on Biodegradable Polymer and Biopolymer/Ceramic Composite Thin Films.

Polymers (Basel). 2019-2-20

[4]
Ultra-Short Laser Surface Properties Optimization of Biocompatibility Characteristics of 3D Poly-ε-Caprolactone and Hydroxyapatite Composite Scaffolds.

Materials (Basel). 2021-12-7

[5]
Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.

Acta Biomater. 2017-12-6

[6]
Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.

Mater Sci Eng C Mater Biol Appl. 2016-1-1

[7]
Analysis of the Adherence of Dental Pulp Stem Cells on Two-Dimensional and Three-Dimensional Silk Fibroin-Based Biomaterials.

J Craniofac Surg. 2017-6

[8]
Nanostructuration of Thin Metal Films by Pulsed Laser Irradiations: A Review.

Nanomaterials (Basel). 2019-8-6

[9]
In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering.

J Tissue Eng. 2014-11-5

[10]
[Preparation and characteristics of non-woven silk fibroin/nano-hydroxyapatite scaffolds].

Hua Xi Kou Qiang Yi Xue Za Zhi. 2008-4

本文引用的文献

[1]
Biomimetic Hierarchical Structuring of PLA by Ultra-Short Laser Pulses for Processing of Tissue Engineered Matrices: Study of Cellular and Antibacterial Behavior.

Polymers (Basel). 2021-8-3

[2]
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo.

Essays Biochem. 2021-8-10

[3]
3D in vitro models of skeletal muscle: myopshere, myobundle and bioprinted muscle construct.

Vet Res. 2021-5-19

[4]
Pelvic floor muscle function recovery using biofabricated tissue constructs with neuromuscular junctions.

Acta Biomater. 2021-2

[5]
Direct Femtosecond Laser Printing of Silk Fibroin Microstructures.

ACS Appl Mater Interfaces. 2020-11-4

[6]
Characterization of Ground Silk Fibroin through Comparison of Nanofibroin and Higher Order Structures.

ACS Omega. 2020-8-28

[7]
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss.

Bioengineering (Basel). 2020-7-31

[8]
Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering.

J Mater Chem B. 2016-6-7

[9]
A polycaprolactone/silk-fibroin nanofibrous composite combined with human umbilical cord serum for subacute tympanic membrane perforation; an in vitro and in vivo study.

J Mater Chem B. 2014-5-14

[10]
Wet-Spun Trojan Horse Cell Constructs for Engineering Muscle.

Front Chem. 2020-2-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索