Suppr超能文献

亮氨酸/缬氨酸突变对抗菌肽:胶束结合的能量学的影响。

Effect of Leu/Val Mutation on the Energetics of Antimicrobial Peptide:Micelle Binding.

机构信息

Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.

出版信息

J Phys Chem B. 2022 Jul 21;126(28):5262-5273. doi: 10.1021/acs.jpcb.2c01293. Epub 2022 Jul 10.

Abstract

Recently, we had reported a synthetic positively charged leucine-rich 14-residue-long antimicrobial peptide (AMP, LL-14: NH-LKWLKKLLKWLKKL-CONH), which was highly active and cytotoxic relative to its valine analogue (VV-14). However, the thermodynamics underlying this differential toxicity and antimicrobial activity was unclear. Understanding the energetics of peptide binding to micelles (simplest membrane mimic, viz., SDS as a bacterial membrane and DPC as a eukaryotic membrane) and the effect of Leu → Val peptide mutations on the stability of the peptide:micelle complexes are of great academic interest and relevant for the rational design of potent and selective AMPs for therapeutic use. Here, we have reported the molecular dynamics free energy simulations that allowed us to quantitatively estimate the strength of peptide discrimination (based on single- or multiple-site Leu/Val mutations in LL-14) by membrane mimetic micelles (SDS and DPC) and decipher the energetics underlying peptide selectivity by micelles. The Leu-containing peptide (LL-14) was found to be preferred for micelle (SDS and DPC) binding relative to its Val analogues (single or multiple Val mutants). The strength of the preference depended on the position of the Leu/Val mutation in the peptide. Surprisingly, the N-terminal LL-14 single mutation (Leu → Val: L1V) was found to fine-tune the electrostatic interactions, resulting in the highest peptide selectivity (ΔΔ ∼ 8 kcal/mol for both SDS and DPC). However, the mechanism of L1V peptide selectivity was distinctly different for SDS and DPC micelles. SDS ensured high selectivity by disrupting the peptide:micelle salt bridge, whereas DPC desolvated the broken-peptide-backbone hydrogen bond in the V1 peptide:micelle complex. Mutations (Leu → Val) in the middle positions of the LL-14 (4th, 7th, 8th, and 11th) were disfavored by the micelles primarily due to the loss of peptide:micelle hydrophobic interactions. Peptides differing at the C-terminal (i.e., L14V) were recognized by SDS micelles (ΔΔ ∼ 4 kcal/mol) by altering peptide:micelle interactions. L14V mutation, on the other hand, did not play any role in the peptide:DPC binding, as no direct interactions between the C-terminal and DPC micelle were observed due to obvious electrostatic reasons. The strength of selectivity favoring LL-14 binding against VV-14 was found to be much higher for DPC micelles (ΔΔ ∼ 25 kcal/mol) relative to SDS micelles (ΔΔ ∼ 19 kcal/mol). The loss of the peptide:micelle hydrophobic contact in response to LL-14 → VV-14 mutation was found to be significantly larger for DPC relative to SDS micelles, resulting in higher discriminatory power for the former. Peptide:SDS salt bridges seemed to prevent the loss of peptide:micelle hydrophobic contact to some extent, leading to weaker selectivity for SDS micelles. High selectivity of DPC micelles provided an efficient mechanism for VV-14 dissociation from DPC micelles, whereas low-selectivity of SDS micelles ensured binding of both LL-14 and VV-14. To the best of our knowledge, this is the first study in which the experimental observations (antimicrobial activity and toxicity) between leucine-rich and valine-rich peptides have been explained by establishing a direct link between the energetics and structures.

摘要

最近,我们报道了一种合成的带正电荷的富含亮氨酸的 14 残基抗菌肽(AMP,LL-14:NH-LKWLKKLLKWLKKL-CONH),与它的缬氨酸类似物(VV-14)相比,它具有更高的活性和细胞毒性。然而,这种差异毒性和抗菌活性的热力学基础尚不清楚。了解肽与胶束(最简单的膜模拟物,即 SDS 作为细菌膜和 DPC 作为真核细胞膜)结合的热力学以及亮氨酸→缬氨酸肽突变对肽:胶束复合物稳定性的影响具有重要的学术意义,并且与合理设计用于治疗的有效和选择性 AMP 相关。在这里,我们报告了分子动力学自由能模拟,使我们能够定量估计由膜模拟胶束(SDS 和 DPC)引起的肽区分(基于 LL-14 中的单个或多个亮氨酸/缬氨酸突变)的强度,并破译肽选择性的基础。发现含有亮氨酸的肽(LL-14)相对于其缬氨酸类似物(单个或多个缬氨酸突变体)更倾向于与胶束(SDS 和 DPC)结合。这种偏好的强度取决于肽中亮氨酸/缬氨酸突变的位置。令人惊讶的是,N 端 LL-14 单突变(亮氨酸→缬氨酸:L1V)被发现微调了静电相互作用,导致肽选择性最高(SDS 和 DPC 中均为ΔΔ≈8 kcal/mol)。然而,L1V 肽选择性的机制对于 SDS 和 DPC 胶束明显不同。SDS 通过破坏肽:胶束盐桥来确保高选择性,而 DPC 在 V1 肽:胶束复合物中去溶剂化破碎肽骨架氢键。LL-14 中间位置(第 4、7、8 和 11 位)的突变(亮氨酸→缬氨酸)主要由于肽:胶束疏水性相互作用的丧失而不受胶束的青睐。由于明显的静电原因,与 C 端不同的肽(即 L14V)通过改变肽:胶束相互作用被 SDS 胶束(ΔΔ≈4 kcal/mol)识别。另一方面,L14V 突变在肽:DPC 结合中不起作用,因为由于明显的静电原因,在 C 端和 DPC 胶束之间没有观察到直接相互作用。与 VV-14 相比,发现 DPC 胶束(ΔΔ≈25 kcal/mol)对 LL-14 结合的选择性强度要高得多,而 SDS 胶束(ΔΔ≈19 kcal/mol)则低得多。与 LL-14→VV-14 突变相比,发现 DPC 胶束中肽:胶束疏水性接触的损失明显更大,导致前者的分辨能力更高。肽:SDS 盐桥似乎在某种程度上阻止了肽:胶束疏水性接触的损失,导致 SDS 胶束的选择性较弱。DPC 胶束的高选择性为 VV-14 从 DPC 胶束中解离提供了有效的机制,而 SDS 胶束的低选择性确保了 LL-14 和 VV-14 的结合。据我们所知,这是首次通过建立与能量学和结构之间的直接联系,解释富含亮氨酸和富含缬氨酸的肽之间的实验观察(抗菌活性和毒性)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验