C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
NMR Biomed. 2022 Dec;35(12):e4801. doi: 10.1002/nbm.4801. Epub 2022 Aug 10.
In a standard spin echo, the time evolution due to homonuclear couplings is not reversed, leading to echo time (TE)-dependent modulation of the signal amplitude and signal loss in the case of overlapping multiplet resonances. This has an adverse effect on quantification of several important metabolites such as glutamate and glutamine. Here, we propose a J-refocused variant of the sLASER sequence (J-sLASER) to improve quantification of J-coupled metabolites at ultrahigh field (UHF). The use of the sLASER sequence is particularly advantageous at UHF as it minimizes chemical shift displacement error and results in relatively homogenous refocusing. We simulated the MRS signal from brain metabolites over a broad range of TE values with sLASER and J-sLASER, and showed that the signal of J-coupled metabolites was increased with J-sLASER with TE values up to ~80 ms. We further simulated "brain-like" spectra with both sequences at the shortest TE available on our scanner. We showed that, despite the slightly longer TE, the J-sLASER sequence results in significantly lower Cramer-Rao lower bounds (CRLBs) for J-coupled metabolites compared with those obtained with sLASER. Following phantom validation, we acquired spectra from two brain regions in 10 healthy volunteers (age 38 ± 15 years) using both sequences. We showed that using J-sLASER results in a decrease of CRLBs for J-coupled metabolites. In particular, we measured a robust ~38% decrease in the mean CRLB (glutamine) in parietal white matter and posterior cingulate cortex (PCC). We further showed, in 10 additional healthy volunteers (age 34 ± 15 years), that metabolite quantification following two separate acquisitions with J-sLASER in the PCC was repeatable. The improvement in quantification of glutamine may in turn improve the independent quantification of glutamate, the main excitatory neurotransmitter in the brain, and will simultaneously help to track possible modulations of glutamine, which is a key player in the glutamatergic cycle in astrocytes.
在标准的自旋回波中,由于同核耦合导致时间演化不反转,从而导致信号幅度随回波时间(TE)变化调制,并且在重叠的多重共振情况下信号丢失。这对谷氨酸和谷氨酰胺等几种重要代谢物的定量产生不利影响。在这里,我们提出了一种超高频(UHF)下用于改善 J 耦合代谢物定量的 sLASER 序列的 J 重聚焦变体(J-sLASER)。在 UHF 下使用 sLASER 序列特别有利,因为它最小化了化学位移位移误差,并导致相对均匀的重聚焦。我们使用 sLASER 和 J-sLASER 模拟了脑代谢物在很宽的 TE 值范围内的 MRS 信号,并表明 J-sLASER 可以在高达~80ms 的 TE 值下增加 J 耦合代谢物的信号。我们进一步在我们扫描仪上最短可用 TE 下用两种序列模拟“类脑”谱。我们表明,尽管 TE 略长,但与 sLASER 相比,J-sLASER 序列可显著降低 J 耦合代谢物的 Cramer-Rao 下限(CRLB)。在进行了幻影验证后,我们使用两种序列从 10 名健康志愿者(年龄 38±15 岁)的两个脑区采集了光谱。我们表明,使用 J-sLASER 可降低 J 耦合代谢物的 CRLB。特别是,我们在顶叶白质和后扣带回皮层(PCC)中测量到谷氨酸的平均 CRLB 降低了约 38%。我们还在另外 10 名健康志愿者(年龄 34±15 岁)中表明,在后扣带回皮层中使用 J-sLASER 进行两次独立采集后的代谢物定量具有可重复性。谷氨酰胺定量的改善反过来又可以改善大脑中主要兴奋性神经递质谷氨酸的独立定量,同时有助于跟踪谷氨酰胺的可能变化,谷氨酰胺是星形胶质细胞中谷氨酰胺能循环的关键参与者。