Harvard School of Public Health, Boston, MA.
Department of Medicine, VA Boston Healthcare System, Boston, MA.
Blood Adv. 2023 Jan 10;7(1):60-72. doi: 10.1182/bloodadvances.2021006870.
Prior reports indicate that the convex membrane curvature of phosphatidylserine (PS)-containing vesicles enhances formation of binding sites for factor Va and lactadherin. Yet, the relationship of convex curvature to localization of these proteins on cells remains unknown. We developed a membrane topology model, using phospholipid bilayers supported by nano-etched silica substrates, to further explore the relationship between curvature and localization of coagulation proteins. Ridge convexity corresponded to maximal curvature of physiologic membranes (radii of 10 or 30 nm) and the troughs had a variable concave curvature. The benchmark PS probe lactadherin exhibited strong differential binding to the ridges, on membranes with 4% to 15% PS. Factor Va, with a PS-binding motif homologous to lactadherin, also bound selectively to the ridges. Bound factor Va supported coincident binding of factor Xa, localizing prothrombinase complexes to the ridges. Endothelial cells responded to prothrombotic stressors and stimuli (staurosporine, tumor necrosis factor-α [TNF- α]) by retracting cell margins and forming filaments and filopodia. These had a high positive curvature similar to supported membrane ridges and selectively bound lactadherin. Likewise, the retraction filaments and filopodia bound factor Va and supported assembly of prothrombinase, whereas the cell body did not. The perfusion of plasma over TNF-α-stimulated endothelia in culture dishes and engineered 3-dimensional microvessels led to fibrin deposition at cell margins, inhibited by lactadherin, without clotting of bulk plasma. Our results indicate that stressed or stimulated endothelial cells support prothrombinase activity localized to convex topological features at cell margins. These findings may relate to perivascular fibrin deposition in sepsis and inflammation.
先前的报告表明,含有磷脂酰丝氨酸(PS)的囊泡的凸面膜曲率增强了因子 Va 和乳粘蛋白结合位点的形成。然而,这些蛋白质在细胞上的定位与凸曲率之间的关系仍然未知。我们开发了一种膜拓扑模型,使用纳米刻蚀二氧化硅基底支撑的磷脂双层,进一步探索凝血蛋白的曲率与定位之间的关系。脊的凸度对应于生理膜的最大曲率(半径为 10 或 30nm),而槽具有可变的凹曲率。基准 PS 探针乳粘蛋白在含有 4%至 15% PS 的膜上对脊表现出强烈的差异结合。因子 Va 具有与乳粘蛋白同源的 PS 结合基序,也选择性地结合到脊上。结合的因子 Va 支持因子 Xa 的同时结合,将凝血酶原酶复合物定位到脊上。内皮细胞通过回缩细胞边缘并形成丝和微丝来响应促血栓形成的应激源和刺激物(星形孢菌素、肿瘤坏死因子-α[TNF-α])。这些具有类似于支撑膜脊的高正曲率,并选择性地结合乳粘蛋白。同样,回缩丝和微丝结合因子 Va 并支持凝血酶原酶的组装,而细胞体则不结合。在培养皿和工程化的 3 维微血管中,将血浆灌注到 TNF-α 刺激的内皮细胞上,导致纤维蛋白沉积在细胞边缘,乳粘蛋白抑制了纤维蛋白沉积,但不会使大量血浆凝固。我们的结果表明,处于应激或刺激状态的内皮细胞支持凝血酶原酶活性定位于细胞边缘的凸拓扑特征。这些发现可能与脓毒症和炎症中的血管周围纤维蛋白沉积有关。