Suppr超能文献

Uptake and release of glycine in the guinea pig cochlear nucleus.

作者信息

Staatz-Benson C, Potashner S J

出版信息

J Neurochem. 1987 Jul;49(1):128-37. doi: 10.1111/j.1471-4159.1987.tb03404.x.

Abstract

This study attempts to determine if the cochlear nucleus (CN) contains glycinergic synaptic endings. The uptake and release of exogenous radiolabeled glycine were measured in vitro in the three major subdivisions of the guinea pig CN: anteroventral, posteroventral, and dorsal. A kinetic analysis of [3H]glycine uptake revealed the presence in each CN subdivision of a high- and a low-affinity uptake mechanism. The high-affinity mechanism had a Km of 25.2-30.5 microM and a Vmax of 3.8-4.8 nmol/10 mg of cell water/5 min, whereas the low-affinity mechanism had a Km of 633-718 microM and a Vmax of 26.6-37.1 nmol/10 mg of cell water/5 min. At steady state, the high-affinity mechanism accumulated 10 microM [3H]glycine from the medium, achieving tissue concentrations that were 13-24 times that in the medium. The high-affinity uptake was dependent on the temperature and on the concentrations of NaCl and glucose in the incubation medium. It exhibited a high degree of substrate specificity, as determined by the effects of structural analogues of glycine on the uptake of [3H]glycine. Each CN subdivision also contained two mechanisms mediating [14C]glycine release. One was activated by depolarizing electrical stimuli, produced a rapid transient release of [14C]glycine, and was dependent on the presence of extracellular Ca2+. The other was continuous, producing a slow spontaneous efflux of [14C]glycine. Released glycine could be removed primarily by uptake, because during release measurements, the amount of [14C]glycine detected in the medium decreased when glycine uptake activity was optimized. The electrically evoked, Ca2+-dependent release and the high-affinity uptake of glycine may mediate the synaptic release and inactivation of glycine, respectively. These findings, therefore, support the presence of glycinergic synaptic endings in each CN subdivision.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验