Suppr超能文献

日本 1926-2020 年 0.01 度格点降水数据集。

A 0.01-degree gridded precipitation dataset for Japan, 1926-2020.

机构信息

Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan.

Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8654, Japan.

出版信息

Sci Data. 2022 Jul 19;9(1):422. doi: 10.1038/s41597-022-01548-3.

Abstract

We developed a 0.01-degree gridded precipitation dataset of Japan based on historical observation datasets covering 1926 to 2020. Historical observations conducted by the Japan Meteorological Agency and other Japanese bureaucratic agencies were spatially interpolated using the inverse distance weighting method at daily and hourly temporal resolutions. Optimal parameterization for our interpolation process was selected by comparing interpolated results of various parameter combinations with precipitation observation conducted by the University of Tokyo Forests. We conducted cross-validation for over 1,000 stations with sufficient data throughout our data period and verified our product can reproduce the temporal variability of local precipitation. The strong points of our precipitation dataset are its high spatiotemporal resolution and the abundance of point precipitation source data. We expect our dataset to be highly relevant to various future studies as it can serve multiple purposes such as forcing data for hydrological models or a database for analyzing the characteristics of historical rainfall events.

摘要

我们基于涵盖 1926 年至 2020 年的历史观测数据集,开发了日本的 0.01 度格点降水数据集。使用反距离权重法对日本气象厅和其他日本政府机构进行的历史观测进行了时空插值,时间分辨率为每日和每小时。通过将各种参数组合的插值结果与东京大学森林的降水观测进行比较,选择了我们插值过程的最佳参数化。我们对整个数据期间有足够数据的 1000 多个站点进行了交叉验证,并验证了我们的产品可以再现局部降水的时间变化。我们的降水数据集的优点是具有较高的时空分辨率和丰富的点状降水源数据。我们希望我们的数据集能与各种未来的研究密切相关,因为它可以作为水文模型的驱动数据或分析历史降雨事件特征的数据库,有多种用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验