Liang Yuchen, Peng Bo
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua321004, China.
Acc Chem Res. 2022 Aug 2;55(15):2103-2122. doi: 10.1021/acs.accounts.2c00263. Epub 2022 Jul 21.
Since Ludwig Claisen's discovery of the sigmatropic rearrangement of allyl aryl ethers in 1912, aromatic Claisen rearrangement has continuously attracted the attention of both experimental and theoretical chemists. Over more than a century of growth, this protocol has proven to be a practical and powerful synthetic tool in many aspects. However, the reaction scope has long been limited to aryl ethers and their or analogs until the serendipitous discovery of aromatic iodonium-Claisen rearrangement by Oh et al. in 1988 and the development of aromatic sulfonium-Claisen rearrangement by Kita et al. in 2004. Unlike traditional Claisen rearrangements, these hypervalent-bonding-based Claisen-type rearrangements can be performed by simply mixing electrophilically activated aryl sulfoxides/iodanes with certain nucleophiles to directly deliver rearrangement products. In addition to the simple operation, remarkable features, such as readily available substrates, valuable products and intriguing rearrangement patterns, have led to a dramatic resurgence of this rearrangement chemistry.In this Account, we summarize our recent works on developing new aromatic rearrangement modes using sulfonium/iodonium reagents. Interestingly, the program started with an accidental discovery that aryl sulfoxides could be coupled with alkyl nitriles in the presence of TfO and base. Mechanistic studies reveal that the reaction proceeds in three major steps, including the TfO-triggered assembly of both coupling partners, base-promoted deprotonation of in situ-generated aryl sulfonium-imine species leading to a key rearrangement precursor called aryl sulfonium-ketenimine species, and subsequent facile and rapid [3,3]-rearrangement. On the basis of the mechanistic underpinning, we divided the one-step operation into two steps called the "assembly/deprotonation" protocol for constructing unstable rearrangement precursors. Most notably, the switch from the commonly used one-step to mechanism-based multiple-step manipulation, which can be termed "breaking up the whole into parts", not only enables the independent control of each step of the reaction, thus significantly expanding the accessible synthetic scope, but also raises opportunities for developing new rearrangement patterns. For example, the "assembly/deprotonation" protocol has also been applied to the development of [5,5]-rearrangement of aryl sulfoxides and the asymmetric rearrangement of aryl iodanes, thus enabling the unprecedented regio- and stereocontrol of the rearrangement process. Furthermore, the "breaking up the whole into parts" thinking triggered us to merge the Morita-Baylis-Hillman (MBH) reaction into the rearrangement process to accomplish -selective MBH-type [3,3]-rearrangement of α,β-unsaturated nitriles and -selective MBH-type [3,3]-rearrangement of α,β-unsaturated 2-oxazolines, which expands the scope of rearrangement partners to include α,β-unsaturated carbonyls. In addition, the impressive rapidity of the rearrangement process found in our initial discovery has also been recognized as a congestion-acceleration effect, which was further utilized to forge the rapid -cyanoalkylative rearrangement of aryl iodanes, and thus leading to the first dearomatization of aryl iodanes. We anticipate that our protocols and ideas behind the methods will be complementary to the traditional thinking of the aromatic Claisen rearrangement.
自1912年路德维希·克莱森发现烯丙基芳基醚的[3,3] - 迁移重排以来,芳香族克莱森重排一直吸引着实验化学家和理论化学家的关注。在一个多世纪的发展历程中,该反应历程已在诸多方面被证明是一种实用且强大的合成工具。然而,直到1988年Oh等人意外发现芳香族碘鎓 - 克莱森重排以及2004年Kita等人开发出芳香族锍鎓 - 克莱森重排之前,其反应范围长期局限于芳基醚及其类似物。与传统的克莱森重排不同,这些基于高价键的克莱森型重排反应可以通过简单地将亲电活化的芳基亚砜/碘鎓盐与某些亲核试剂混合,直接得到重排产物。除了操作简单外,其显著特点,如底物易于获取、产物有价值以及重排模式引人入胜,使得这种重排化学得以显著复兴。
在本综述中,我们总结了我们最近使用锍鎓/碘鎓试剂开发新的芳香族重排模式的工作。有趣的是,该项目始于一个意外发现:在三氟甲磺酸根(TfO)和碱存在下,芳基亚砜可以与烷基腈偶联。机理研究表明,该反应分三个主要步骤进行,包括TfO引发的两个偶联伙伴的组装、碱促进原位生成的芳基锍 - 亚胺物种的去质子化,生成一种关键的重排前体——芳基锍 - 乙烯酮亚胺物种,以及随后 facile且快速的[3,3] - 重排。基于这一机理基础,我们将一步操作分为两步,即用于构建不稳定重排前体的“组装/去质子化”方案。最值得注意的是,从常用的一步操作转变为基于机理的多步操作,即“化整为零”,不仅能够独立控制反应的每一步,从而显著扩大了可及的合成范围,还为开发新的重排模式提供了机会。例如,“组装/去质子化”方案也已应用于芳基亚砜的[5,5] - 重排和芳基碘鎓盐的不对称重排,从而实现了重排过程前所未有的区域和立体控制。此外,“化整为零”的思路促使我们将森田 - 贝利斯 - 希尔曼(MBH)反应融入重排过程,以完成α,β - 不饱和腈的γ - 选择性MBH型[3,3] - 重排和α,β - 不饱和2 - 恶唑啉的δ - 选择性MBH型[3,3] - 重排,这将重排伙伴的范围扩展到包括α,β - 不饱和羰基化合物。此外,我们最初发现的重排过程令人印象深刻的快速性也被认为是一种拥挤加速效应,这进一步被用于实现芳基碘鎓盐的快速γ - 氰基烷基化重排,从而实现了芳基碘鎓盐的首次去芳构化。我们预计我们的方案和方法背后的理念将与芳香族克莱森重排的传统思路相辅相成。