Department of Neurology, Harvard Medical School, Massachusetts General Hospital.
Department of Medicine, Division of General Internal Medicine, University of Washington.
Neuropsychology. 2023 May;37(4):436-449. doi: 10.1037/neu0000833. Epub 2022 Jul 21.
Studies are increasingly examining research questions across multiple cohorts using data from the preclinical Alzheimer cognitive composite (PACC). Our objective was to use modern psychometric approaches to develop a harmonized PACC.
We used longitudinal data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and Australian Imaging, Biomarker and Lifestyle Study of Ageing (AIBL) cohorts ( = 2,712). We further demonstrated our method with the Anti-Amyloid Treatment of Asymptomatic Alzheimer's Disease (A4) Study prerandomized data ( = 4,492). For the harmonization method, we used confirmatory factor analysis (CFA) on the final visit of the longitudinal cohorts to determine parameters to generate latent PACC (lPACC) scores. Overlapping tests across studies were set as "anchors" that tied cohorts together, while parameters from unique tests were freely estimated. We performed validation analyses to assess the performance of lPACC versus the common standardized PACC (zPACC).
Baseline (BL) scores for the zPACC were centered on zero, by definition. The harmonized lPACC did not define a common mean of zero and demonstrated differences in baseline ability levels across the cohorts. Baseline lPACC slightly outperformed zPACC in the prediction of progression to dementia. Longitudinal change in the lPACC was more constrained and less variable relative to the zPACC. In combined-cohort analyses, longitudinal lPACC slightly outperformed longitudinal zPACC in its association with baseline β-amyloid status.
This study proposes procedures for harmonizing the PACC that make fewer strong assumptions than the zPACC, facilitating robust multicohort analyses. This implementation of item response theory lends itself to adapting across future cohorts with similar composites. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
越来越多的研究使用来自临床前阿尔茨海默认知综合(PACC)的预临床数据来检验多个队列的研究问题。我们的目的是使用现代心理测量方法开发一个协调的 PACC。
我们使用来自阿尔茨海默病神经影像学倡议(ADNI)、哈佛衰老大脑研究(HABS)和澳大利亚成像、生物标志物和生活方式衰老研究(AIBL)队列的纵向数据(n=2712)。我们进一步使用抗淀粉样蛋白治疗无症状阿尔茨海默病(A4)研究的预随机数据(n=4492)展示了我们的方法。对于协调方法,我们使用纵向队列的最后一次随访进行验证性因素分析(CFA),以确定生成潜在 PACC(lPACC)评分的参数。跨研究的重叠测试被设置为“锚”,将队列联系在一起,而独特测试的参数则自由估计。我们进行了验证分析,以评估 lPACC 与常见标准化 PACC(zPACC)的性能。
根据定义,zPACC 的基线(BL)分数集中在零。协调后的 lPACC 没有定义一个共同的零均值,并且在队列之间表现出不同的基线能力水平。在预测向痴呆发展方面,基线 lPACC 略优于 zPACC。与 zPACC 相比,lPACC 的纵向变化更受限制,变化更小。在联合队列分析中,lPACC 的纵向变化与基线β-淀粉样蛋白状态的关联略优于纵向 zPACC。
本研究提出了协调 PACC 的程序,这些程序比 zPACC 做出的假设更少,从而促进了稳健的多队列分析。这种项目反应理论的实施适用于适应未来具有类似综合评估的队列。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。