Suppr超能文献

POLIMI-ITW-S:一个用于野外人类活动识别的大规模数据集。

POLIMI-ITW-S: A large-scale dataset for human activity recognition in the wild.

作者信息

Quan Hao, Hu Yu, Bonarini Andrea

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.

School of Information Engineering, Kaili University, Guizhou Province, China.

出版信息

Data Brief. 2022 Jun 30;43:108420. doi: 10.1016/j.dib.2022.108420. eCollection 2022 Aug.

Abstract

Human activity recognition is attracting increasing research attention. Many activity recognition datasets have been created to support the development and evaluation of new algorithms. Given the lack of datasets collected in real environments (In The Wild) to support human activity recognition in public spaces, we introduce a large-scale video dataset for activity recognition In The Wild: POLIMI-ITW-S. The fully labeled dataset consists of 22,161 RGB video clips (about 46 h) including 37 activity classes performed by 50 K+ subjects in real shopping malls. We evaluated the state-of-the-art models on this dataset and get relatively low accuracy. We release the dataset including the annotations composed by person tracking bounding boxes, 2-D skeleton, and activity labels for research use at: https://airlab.deib.polimi.it/polimi-itw-s-a-shopping-mall-dataset-in-the-wild.

摘要

人类活动识别正吸引着越来越多的研究关注。为了支持新算法的开发和评估,人们创建了许多活动识别数据集。鉴于缺乏在真实环境(野外)中收集的用于支持公共场所人类活动识别的数据集,我们引入了一个用于野外活动识别的大规模视频数据集:POLIMI-ITW-S。这个全标注数据集由22161个RGB视频片段(约46小时)组成,包含5万多名受试者在真实购物中心执行的37种活动类别。我们在这个数据集上评估了当前最先进的模型,得到的准确率相对较低。我们在https://airlab.deib.polimi.it/polimi-itw-s-a-shopping-mall-dataset-in-the-wild上发布了该数据集,包括由人物跟踪边界框、二维骨架和活动标签组成的注释,以供研究使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6102/9294482/4baec720146c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验