Quan Hao, Hu Yu, Bonarini Andrea
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
School of Information Engineering, Kaili University, Guizhou Province, China.
Data Brief. 2022 Jun 30;43:108420. doi: 10.1016/j.dib.2022.108420. eCollection 2022 Aug.
Human activity recognition is attracting increasing research attention. Many activity recognition datasets have been created to support the development and evaluation of new algorithms. Given the lack of datasets collected in real environments (In The Wild) to support human activity recognition in public spaces, we introduce a large-scale video dataset for activity recognition In The Wild: POLIMI-ITW-S. The fully labeled dataset consists of 22,161 RGB video clips (about 46 h) including 37 activity classes performed by 50 K+ subjects in real shopping malls. We evaluated the state-of-the-art models on this dataset and get relatively low accuracy. We release the dataset including the annotations composed by person tracking bounding boxes, 2-D skeleton, and activity labels for research use at: https://airlab.deib.polimi.it/polimi-itw-s-a-shopping-mall-dataset-in-the-wild.
人类活动识别正吸引着越来越多的研究关注。为了支持新算法的开发和评估,人们创建了许多活动识别数据集。鉴于缺乏在真实环境(野外)中收集的用于支持公共场所人类活动识别的数据集,我们引入了一个用于野外活动识别的大规模视频数据集:POLIMI-ITW-S。这个全标注数据集由22161个RGB视频片段(约46小时)组成,包含5万多名受试者在真实购物中心执行的37种活动类别。我们在这个数据集上评估了当前最先进的模型,得到的准确率相对较低。我们在https://airlab.deib.polimi.it/polimi-itw-s-a-shopping-mall-dataset-in-the-wild上发布了该数据集,包括由人物跟踪边界框、二维骨架和活动标签组成的注释,以供研究使用。