Suppr超能文献

由带相反电荷的聚合物基质引导的聚电解质接枝纳米颗粒的自组装形态。

Self-assembled morphologies of polyelectrolyte-grafted nanoparticles directed by oppositely charged polymer matrices.

作者信息

Hao Qing-Hai, Cheng Jie, Yang Fan, Tan Hong-Ge

机构信息

College of Science, Civil Aviation University of China Tianjin 300300 China

出版信息

RSC Adv. 2022 Jul 7;12(31):19726-19735. doi: 10.1039/d2ra00867j. eCollection 2022 Jul 6.

Abstract

Self-assembled structure of polymer grafted nanoparticles is an interesting and growing subject in the field of hybrid electronics and high energy density materials. In light of this, the self-assembled morphologies of polyelectrolyte (PE) sparsely grafted nanoparticles tuned by oppositely charged matrix chains are studied using molecular dynamics simulations. Our focus is to elucidate the effect of matrix chain polymerization on modulating the stretching properties of tethered PE layers, on the self-assembled structuring of nanoparticles. Through varying the matrix chain length and stiffness as well as electrostatic interaction strength, rich phase behaviors of PE coated nanoparticles are predicted, including spherical micelle-like structures being preferred with short matrix chains and percolating network morphologies favored with long matrix chains, which is more pronounced with an enhanced matrix chain rigidness. To pinpoint the mechanisms of self-assembled structure formation, the thickness of grafted layers, the gyration radius of tethered chains, and pair correlation functions between nanoparticles are analyzed carefully. Additionally, electrostatic correlations, manifested as the bridging matrix chains, are examined by identifying three states of matrix PE chains. Our simulation results may be useful for designing smart polymer nanocomposites based on PE coated nanoparticles.

摘要

聚合物接枝纳米粒子的自组装结构是混合电子学和高能量密度材料领域中一个有趣且不断发展的课题。鉴于此,利用分子动力学模拟研究了由带相反电荷的基质链调控的聚电解质(PE)稀疏接枝纳米粒子的自组装形态。我们的重点是阐明基质链聚合对调节接枝PE层的拉伸性能以及纳米粒子自组装结构的影响。通过改变基质链长度、刚度以及静电相互作用强度,预测了PE包覆纳米粒子丰富的相行为,包括短基质链时更倾向于形成球形胶束状结构,长基质链时更有利于形成渗流网络形态,且随着基质链刚性增强这种现象更明显。为了确定自组装结构形成的机制,仔细分析了接枝层的厚度、接枝链的回转半径以及纳米粒子之间的对关联函数。此外,通过识别基质PE链的三种状态来研究表现为桥连基质链的静电相关性。我们的模拟结果可能有助于设计基于PE包覆纳米粒子的智能聚合物纳米复合材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9ed/9260519/910c2fab5c9c/d2ra00867j-f1.jpg

相似文献

1
Self-assembled morphologies of polyelectrolyte-grafted nanoparticles directed by oppositely charged polymer matrices.
RSC Adv. 2022 Jul 7;12(31):19726-19735. doi: 10.1039/d2ra00867j. eCollection 2022 Jul 6.
3
Deep learning potential of mean force between polymer grafted nanoparticles.
Soft Matter. 2022 Oct 26;18(41):7909-7916. doi: 10.1039/d2sm00945e.
6
Charge-Driven Self-Assembly of Polyelectrolyte-Grafted Nanoparticles in Solutions.
Langmuir. 2021 Oct 19;37(41):12007-12015. doi: 10.1021/acs.langmuir.1c01571. Epub 2021 Oct 7.
8
Electrostatic Adsorption Behaviors of Charged Polymer-Tethered Nanoparticles on Oppositely Charged Surfaces.
Macromol Rapid Commun. 2022 Jul;43(14):e2200171. doi: 10.1002/marc.202200171. Epub 2022 May 15.
9
Polyelectrolyte-surfactant complex: phases of self-assembled structures.
Faraday Discuss. 2005;128:389-405. doi: 10.1039/b404677c.
10
Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles.
J Phys Chem B. 2019 Mar 7;123(9):2157-2168. doi: 10.1021/acs.jpcb.8b11118. Epub 2019 Feb 25.

引用本文的文献

本文引用的文献

1
Self-Assembly of Monodisperse versus Bidisperse Polymer-Grafted Nanoparticles.
ACS Macro Lett. 2016 Jul 19;5(7):790-795. doi: 10.1021/acsmacrolett.6b00349. Epub 2016 Jun 16.
2
Viscosity of polyelectrolyte-grafted nanoparticle solutions.
Soft Matter. 2021 Mar 28;17(12):3455-3462. doi: 10.1039/d0sm02142c. Epub 2021 Mar 2.
3
Direct Simulations of Phase Behavior of Mixtures of Oppositely Charged Proteins/Nanoparticles and Polyelectrolytes.
J Phys Chem B. 2020 Dec 3;124(48):10943-10951. doi: 10.1021/acs.jpcb.0c08317. Epub 2020 Nov 18.
4
Assembly of Polymer-Grafted Nanoparticles in Polymer Matrices.
ACS Nano. 2020 Oct 27;14(10):13491-13499. doi: 10.1021/acsnano.0c05495. Epub 2020 Oct 8.
5
Self-assembly of polyelectrolyte diblock copolymers within mixtures of monovalent and multivalent counterions.
Phys Chem Chem Phys. 2020 Jul 22;22(28):16334-16344. doi: 10.1039/d0cp01019g.
6
Polymer-guided assembly of inorganic nanoparticles.
Chem Soc Rev. 2020 Jan 21;49(2):465-508. doi: 10.1039/c9cs00725c. Epub 2019 Dec 17.
7
Morphologies of a polyelectrolyte brush grafted onto a cubic colloid in the presence of trivalent ions.
Phys Chem Chem Phys. 2019 Sep 18;21(36):20031-20044. doi: 10.1039/c9cp03819a.
8
Self-assembly and structural manipulation of diblock-copolymer grafted nanoparticles in a homopolymer matrix.
Phys Chem Chem Phys. 2019 Jun 5;21(22):11785-11796. doi: 10.1039/c9cp00872a.
9
Self-assembly of polyelectrolyte diblock copolymers at monovalent and multivalent counterions.
Soft Matter. 2019 May 8;15(18):3689-3699. doi: 10.1039/c9sm00028c.
10
Multivalent counterions diminish the lubricity of polyelectrolyte brushes.
Science. 2018 Jun 29;360(6396):1434-1438. doi: 10.1126/science.aar5877.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验