Suppr超能文献

划分北极和高山林线的热力学基础。

Thermodynamic basis for the demarcation of Arctic and alpine treelines.

机构信息

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.

Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.

出版信息

Sci Rep. 2022 Jul 22;12(1):12565. doi: 10.1038/s41598-022-16462-2.

Abstract

At the edge of alpine and Arctic ecosystems all over the world, a transition zone exists beyond which it is either infeasible or unfavorable for trees to exist, colloquially identified as the treeline. We explore the possibility of a thermodynamic basis behind this demarcation in vegetation by considering ecosystems as open systems driven by thermodynamic advantage-defined by vegetation's ability to dissipate heat from the earth's surface to the air above the canopy. To deduce whether forests would be more thermodynamically advantageous than existing ecosystems beyond treelines, we construct and examine counterfactual scenarios in which trees exist beyond a treeline instead of the existing alpine meadow or Arctic tundra. Meteorological data from the Italian Alps, United States Rocky Mountains, and Western Canadian Taiga-Tundra are used as forcing for model computation of ecosystem work and temperature gradients at sites on both sides of each treeline with and without trees. Model results indicate that the alpine sites do not support trees beyond the treeline, as their presence would result in excessive CO[Formula: see text] loss and extended periods of snowpack due to temperature inversions (i.e., positive temperature gradient from the earth surface to the atmosphere). Further, both Arctic and alpine sites exhibit negative work resulting in positive feedback between vegetation heat dissipation and temperature gradient, thereby extending the duration of temperature inversions. These conditions demonstrate thermodynamic infeasibility associated with the counterfactual scenario of trees existing beyond a treeline. Thus, we conclude that, in addition to resource constraints, a treeline is an outcome of an ecosystem's ability to self-organize towards the most advantageous vegetation structure facilitated by thermodynamic feasibility.

摘要

在世界各地的高山和北极生态系统的边缘,存在一个过渡带,超出这个范围,树木的存在无论是在实际上还是在环境上都是不可行或不利的,这个过渡带通常被称为树线。我们通过将生态系统视为由热力学优势驱动的开放系统来探索植被划分的背后是否存在热力学基础,这种优势由植被从地表向树冠上方的空气散热的能力来定义。为了推断森林是否比树线以外的现有生态系统在热力学上更具优势,我们构建并检查了反事实情景,即在树线以外的地方存在树木,而不是现有的高山草甸或北极苔原。意大利阿尔卑斯山、美国落基山脉和加拿大西部的泰加-苔原的气象数据被用作模型计算的驱动力,以模拟生态系统在树线两侧有树和无树的情况下的工作和温度梯度。模型结果表明,高山地区不支持树线以外的树木存在,因为树木的存在会导致 CO[Formula: see text]过度损失和由于温度逆温(即从地表到大气的正温度梯度)而导致积雪期延长。此外,北极和高山地区的生态系统都表现出负功,导致植被散热和温度梯度之间的正反馈,从而延长了温度逆温的持续时间。这些条件表明,与树线以外存在树木的反事实情景相关的是热力学上的不可行性。因此,我们得出结论,除了资源限制外,树线也是生态系统自我组织向最有利的植被结构的结果,这是由热力学可行性所促进的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999c/9307831/97e5e30e954f/41598_2022_16462_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验