Suppr超能文献

通过浑浊体积进行瞬态运动分类:并行单光子检测与深度对比嵌入

Transient Motion Classification Through Turbid Volumes Parallelized Single-Photon Detection and Deep Contrastive Embedding.

作者信息

Xu Shiqi, Liu Wenhui, Yang Xi, Jönsson Joakim, Qian Ruobing, McKee Paul, Kim Kanghyun, Konda Pavan Chandra, Zhou Kevin C, Kreiß Lucas, Wang Haoqian, Berrocal Edouard, Huettel Scott A, Horstmeyer Roarke

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, United States.

Department of Automation, Tsinghua University, Beijing, China.

出版信息

Front Neurosci. 2022 Jul 8;16:908770. doi: 10.3389/fnins.2022.908770. eCollection 2022.

Abstract

Fast noninvasive probing of spatially varying decorrelating events, such as cerebral blood flow beneath the human skull, is an essential task in various scientific and clinical settings. One of the primary optical techniques used is diffuse correlation spectroscopy (DCS), whose classical implementation uses a single or few single-photon detectors, resulting in poor spatial localization accuracy and relatively low temporal resolution. Here, we propose a technique termed , a new form of DCS that can probe and classify different decorrelating movements hidden underneath turbid volume with high sensitivity using parallelized speckle detection from a 32 × 32 pixel SPAD array. We evaluate our setup by classifying different spatiotemporal-decorrelating patterns hidden beneath a 5 mm tissue-like phantom made with rapidly decorrelating dynamic scattering media. Twelve multi-mode fibers are used to collect scattered light from different positions on the surface of the tissue phantom. To validate our setup, we generate perturbed decorrelation patterns by both a digital micromirror device (DMD) modulated at multi-kilo-hertz rates, as well as a vessel phantom containing flowing fluid. Along with a deep contrastive learning algorithm that outperforms classic unsupervised learning methods, we demonstrate our approach can accurately detect and classify different transient decorrelation events (happening in 0.1-0.4 s) underneath turbid scattering media, without any data labeling. This has the potential to be applied to non-invasively monitor deep tissue motion patterns, for example identifying normal or abnormal cerebral blood flow events, at multi-Hertz rates within a compact and static detection probe.

摘要

快速无创探测空间变化的去相关事件,如人类头骨下的脑血流,是各种科学和临床环境中的一项重要任务。所使用的主要光学技术之一是扩散相关光谱法(DCS),其传统实现方式使用单个或少数单光子探测器,导致空间定位精度差和时间分辨率相对较低。在此,我们提出一种称为 的技术,这是一种新型的DCS,它可以使用来自32×32像素单光子雪崩二极管(SPAD)阵列的并行散斑检测,以高灵敏度探测和分类隐藏在浑浊体积下的不同去相关运动。我们通过对隐藏在由快速去相关动态散射介质制成的5毫米组织样体模下的不同时空去相关模式进行分类,来评估我们的装置。使用十二根多模光纤从组织样体模表面的不同位置收集散射光。为了验证我们的装置,我们通过以多千赫兹速率调制的数字微镜器件(DMD)以及包含流动流体的血管样体模来生成扰动去相关模式。连同一种优于经典无监督学习方法的深度对比学习算法,我们证明我们的方法可以在没有任何数据标记的情况下,准确地检测和分类浑浊散射介质下的不同瞬态去相关事件(发生在0.1 - 0.4秒内)。这有可能应用于以多赫兹速率在紧凑的静态检测探头中无创监测深部组织运动模式,例如识别正常或异常的脑血流事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bd4/9304989/8ce612e15071/fnins-16-908770-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验