Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
J Bioinform Comput Biol. 2022 Jun;20(3):2250016. doi: 10.1142/S0219720022500160.
Traditional Chinese medicine (TCM) is characterized by synergistic therapeutic effect involving multiple compounds and targets, which provide potential new therapy for the treatment of complex cancer conditions. However, the main contributors and the underlying mechanisms of synergistic TCM cancer therapies remain largely undetermined. Machine learning now provides a new approach to determine synergistic compound combinations from complex components of TCM. In this study, a prediction model based on extreme gradient boosting (XGBoost) algorithm was constructed by integrating gene expression data of different cancer cell lines, targets information of natural compounds and drug response data. Radix Paeoniae Rubra (RPR) was selected as a model herbal sample to evaluate the reliability of the constructed model. The optimal XGBoost prediction model achieved a good performance with Mean Square Error (MSE) of 0.66, Mean Absolute Error (MAE) of 0.61, and the Root Mean Squared Error (RMSE) of 0.81 on test dataset. The superior synergistic anti-tumor combinations of D15 (Paeonol[Formula: see text][Formula: see text][Formula: see text]Ethyl gallate) and D13 (Paeoniflorin[Formula: see text][Formula: see text][Formula: see text]Paeonol) were successfully predicted from RPR and experimentally validated on MCF-7 cells. Moreover, the combination of D13 could work as a main contributor to a synergistic anti-proliferative activity in the compatibility of RPR and Cortex Moutan (CM). Our XGBoost model could be a reliable tool for the efficient prediction of synergistic anti-tumor multi-compound combinations from TCM.
传统中药(TCM)的治疗效果具有协同作用,涉及多种化合物和靶点,为治疗复杂的癌症状况提供了潜在的新疗法。然而,协同 TCM 癌症疗法的主要贡献者和潜在机制在很大程度上仍未确定。机器学习现在为从 TCM 的复杂成分中确定协同化合物组合提供了一种新方法。在这项研究中,通过整合不同癌细胞系的基因表达数据、天然化合物的靶点信息和药物反应数据,构建了基于极端梯度增强(XGBoost)算法的预测模型。选择白芍(RPR)作为模型草药样本,以评估所构建模型的可靠性。最佳 XGBoost 预测模型在测试数据集上实现了良好的性能,均方误差(MSE)为 0.66、平均绝对误差(MAE)为 0.61 和均方根误差(RMSE)为 0.81。从 RPR 成功预测了 D15(丹皮酚[Formula: see text][Formula: see text][Formula: see text]没食子酸乙酯)和 D13(芍药苷[Formula: see text][Formula: see text][Formula: see text]丹皮酚)的协同抗肿瘤的超优组合,并在 MCF-7 细胞上进行了实验验证。此外,D13 组合可以作为 RPR 和丹皮(CM)配伍的协同抗增殖活性的主要贡献者。我们的 XGBoost 模型可以成为从 TCM 高效预测协同抗肿瘤多化合物组合的可靠工具。