Suppr超能文献

总固体含量对厨余垃圾和污泥共消化中添加生物炭的影响:微生物群落动态、甲烷生成和消化物质量评估。

Impact of total solids content on biochar amended co-digestion of food waste and sludge: Microbial community dynamics, methane production and digestate quality assessment.

机构信息

Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.

Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada.

出版信息

Bioresour Technol. 2022 Oct;361:127682. doi: 10.1016/j.biortech.2022.127682. Epub 2022 Jul 23.

Abstract

This study evaluates the impact of biochar addition on the performance of anaerobic co-digestion of food waste (FW) and sewage sludge at different total solids (TS) contents (2.5 %, 5.0 %, and 7.5 %). Biochar co-digestion improved hydrolysis and acidogenesis by neutralizing volatile fatty acids (VFAs) reducing its inhibitions (2.6-fold removal), which elevated the soluble chemical oxygen demand (sCOD) degradation by 2.5 folds leading to a higher cumulative methane production compared to the control. This increase corresponded to an improvement of methane yields by ∼21 %-33 % (242-340 mL/gVS) at different TS contents. The biochar surface area offered substantial support for direct interspecies electron transfer (DIET) activity, and biofilm-mediated growth of methanogens i.e., Methanosarcina, Methanosata, and Methanobrevibacter. The biochar-enriched digestate improved the seed germination index, and bioavailability of plant nutrients such as N, P, K, and NHN. This study reports an improved biochar-mediated anaerobic co-digestion for efficient and sustainable FW valorization.

摘要

本研究评估了生物炭添加对不同总固体(TS)含量(2.5%、5.0%和 7.5%)下食物垃圾(FW)和污水污泥共厌氧消化性能的影响。生物炭共消化通过中和挥发性脂肪酸(VFAs)减少其抑制作用(去除 2.6 倍)来改善水解和产酸作用,使可溶化学需氧量(sCOD)降解提高了 2.5 倍,与对照相比,累积甲烷产量更高。这种增加对应于在不同 TS 含量下甲烷产率提高了约 21%-33%(242-340 mL/gVS)。生物炭的表面积为直接种间电子转移(DIET)活性和产甲烷菌(即 Methanosarcina、Methanosata 和 Methanobrevibacter)的生物膜介导生长提供了实质性支持。富含生物炭的消化物提高了种子发芽指数和植物养分(如 N、P、K 和 NHN)的生物利用度。本研究报告了一种改进的生物炭介导的厌氧共消化,可有效且可持续地利用 FW。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验