Johnson Ian D, Mistry Aashutosh N, Yin Liang, Murphy Megan, Wolfman Mark, Fister Timothy T, Lapidus Saul H, Cabana Jordi, Srinivasan Venkat, Ingram Brian J
Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.
J Am Chem Soc. 2022 Aug 10;144(31):14121-14131. doi: 10.1021/jacs.2c03491. Epub 2022 Jul 27.
Ion transport in solid-state cathode materials prescribes a fundamental limit to the rates batteries can operate; therefore, an accurate understanding of ion transport is a critical missing piece to enable new battery technologies, such as magnesium batteries. Based on our conventional understanding of lithium-ion materials, MgCrO is a promising magnesium-ion cathode material given its high capacity, high voltage against an Mg anode, and acceptable computed diffusion barriers. Electrochemical examinations of MgCrO, however, reveal significant energetic limitations. Motivated by these disparate observations; herein, we examine long-range ion transport by electrically polarizing dense pellets of MgCrO. Our conventional understanding of ion transport in battery cathode materials, e.g., Nernst-Einstein conduction, cannot explain the measured response since it neglects frictional interactions between mobile species and their nonideal free energies. We propose an extended theory that incorporates these interactions and reduces to the Nernst-Einstein conduction under dilute conditions. This theory describes the measured response, and we report the first study of long-range ion transport behavior in MgCrO. We conclusively show that the Mg chemical diffusivity is comparable to lithium-ion electrode materials, whereas the total conductivity is rate-limiting. Given these differences, energy storage in MgCrO is limited by particle-scale voltage drops, unlike lithium-ion particles that are limited by concentration gradients. Future materials design efforts should consider the interspecies interactions described in this extended theory, particularly with respect to multivalent-ion systems and their resultant effects on continuum transport properties.
固态阴极材料中的离子传输对电池的运行速率规定了一个基本限制;因此,准确理解离子传输是实现新型电池技术(如镁电池)的关键缺失环节。基于我们对锂离子材料的传统理解,MgCrO因其高容量、相对于镁阳极的高电压以及可接受的计算扩散势垒,是一种有前景的镁离子阴极材料。然而,对MgCrO的电化学研究揭示了显著的能量限制。受这些不同观察结果的启发,在此我们通过对MgCrO致密颗粒进行电极化来研究长程离子传输。我们对电池阴极材料中离子传输的传统理解,例如能斯特 - 爱因斯坦传导,无法解释测量到的响应,因为它忽略了可移动物种之间的摩擦相互作用及其非理想自由能。我们提出了一种扩展理论,该理论纳入了这些相互作用,并在稀释条件下简化为能斯特 - 爱因斯坦传导。该理论描述了测量到的响应,并且我们报告了对MgCrO中长程离子传输行为的首次研究。我们最终表明,Mg的化学扩散率与锂离子电极材料相当,而总电导率是速率限制因素。鉴于这些差异,MgCrO中的能量存储受颗粒尺度电压降的限制,这与受浓度梯度限制的锂离子颗粒不同。未来的材料设计工作应考虑这种扩展理论中描述的物种间相互作用,特别是对于多价离子系统及其对连续传输性质的影响。