Suppr超能文献

细菌和微藻对氟喹诺酮类药物的高效协同降解:环保替代品的设计、风险调控与机制分析。

Efficient and synergistic degradation of fluoroquinolones by bacteria and microalgae: Design of environmentally friendly substitutes, risk regulation and mechanism analysis.

机构信息

College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.

出版信息

J Hazard Mater. 2022 Sep 5;437:129384. doi: 10.1016/j.jhazmat.2022.129384. Epub 2022 Jun 15.

Abstract

Fluoroquinolones (FQs) are widely used as antimicrobial agents, and their nonbiodegradable in sewage has become an increasingly concerning. High-biochemical substitutes of FQs were designed with bacteria and microalgae as driving forces of biodegradation, and this is the first study on efficient synergistic degradation of FQs by multiple microorganisms. Among 143 designed FQ substitutes, only one was screened with high biodegradability (increased by 120.51 %), improved functional properties (genotoxicity: 13.66 %), less environmental impacts (bio-accumulation: -44.81 %), less human health and ecological risk (hepatotoxicity: -106.21 %). The complex functional protein with the synergistic degradation effect of bacteria and microalgae was constructed, which proved their synergistic degradation and realized the effect of "1 + 1 > 2″. The best risk regulation scheme determined using molecular dynamics simulation proved the degradation ability of complex functional protein and found the CIP-129 was easy to be degraded in real environment compared with CIP, and the degradation rate increased by 70.42 %. The synthesis path of CIP-129 and CIP were inferred and calculated, and the results showed the Gibbs free energies of three CIP-129 synthetic paths (40.64 a.u.; 40.61 a.u.; 40.65 a.u.) were close to the energy required for the CIP (39.43 a.u.), indicating there was no significant difference in the energy consumption of CIP-129 in laboratory synthesis.

摘要

氟喹诺酮类(FQs)被广泛用作抗菌剂,但其在污水中不可生物降解已成为一个日益令人关注的问题。以细菌和微藻为驱动力,设计了高生化替代品来进行 FQs 的生物降解,这是首次研究多种微生物对 FQs 的高效协同降解。在设计的 143 种 FQ 替代品中,只有一种具有较高的生物降解性(增加了 120.51%)、改善的功能特性(遗传毒性:13.66%)、较小的环境影响(生物蓄积性:-44.81%)、较小的人类健康和生态风险(肝毒性:-106.21%)被筛选出来。构建了具有协同降解作用的细菌和微藻的复杂功能蛋白,证明了它们的协同降解作用,并实现了“1+1>2”的效果。使用分子动力学模拟确定的最佳风险调节方案证明了复杂功能蛋白的降解能力,并发现 CIP-129 比 CIP 更容易在实际环境中降解,降解速率提高了 70.42%。推断和计算了 CIP-129 和 CIP 的合成路径,结果表明三种 CIP-129 合成路径的吉布斯自由能(40.64 a.u.;40.61 a.u.;40.65 a.u.)接近 CIP 所需的能量(39.43 a.u.),表明在实验室合成 CIP-129 时能量消耗没有明显差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验