Nash M T, Quijada-Rodriguez A R, Allen G J P, Wilson J M, Weihrauch D
Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
Biology, Wilfrid Laurier University, Waterloo, Canada.
Comp Biochem Physiol A Mol Integr Physiol. 2022 Oct;272:111281. doi: 10.1016/j.cbpa.2022.111281. Epub 2022 Jul 25.
Intertidal crustaceans like Carcinus maenas shift between an osmoconforming and osmoregulating state when inhabiting full-strength seawater and dilute environments, respectively. While the bodily fluids and environment of marine osmoconformers are approximately isosmotic, osmoregulating crabs inhabiting dilute environments maintain their bodily fluid osmolality above that of their environment by actively absorbing and retaining osmolytes (e.g., Na, Cl, urea) while eliminating excess water. Few studies have investigated the role of aquaporins (AQPs) in the osmoregulatory organs of crustaceans, especially within brachyuran species. In the current study, three different aquaporins were identified within a transcriptome of C. maenas, including a classical AQP (CmAQP1), an aquaglyceroporin (CmGLP1), and a big-brain protein (CmBIB1), all of which are expressed in the gills and the antennal glands. Functional expression of these aquaporins confirmed water transport capabilities for CmAQP1, CmGLP1, but not for CmBIB1, while CmGLP1 also transported urea. Higher relative CmAQP1 mRNA expression within tissues of osmoconforming crabs suggests the apical/sub-apically localized channel attenuates osmotic gradients created by non-osmoregulatory processes while its downregulation in dilute media reduces the water permeability of tissues to facilitate osmoregulation. Although hemolymph urea concentrations rose upon exposure to brackish water, urea was not detected in the final urine. Due to its urea-transport capabilities, CmGLP1 is hypothesized to be involved in a urea retention mechanism believed to be involved in the production of diluted urine. Overall, these results suggest that AQPs are involved in osmoregulation and provide a basis for future mechanistic studies investigating the role of AQPs in volume regulation in crustaceans.
像滨蟹这样的潮间带甲壳类动物,当分别栖息在全强度海水和稀释环境中时,会在渗透顺应和渗透调节状态之间转换。虽然海洋渗透顺应者的体液和环境大致等渗,但栖息在稀释环境中的渗透调节蟹通过主动吸收和保留渗透溶质(如钠、氯、尿素)同时排出多余水分,来维持其体液渗透压高于环境渗透压。很少有研究调查水通道蛋白(AQP)在甲壳类动物渗透调节器官中的作用,尤其是在短尾类物种中。在当前研究中,在滨蟹的转录组中鉴定出三种不同的水通道蛋白,包括一种经典水通道蛋白(CmAQP1)、一种水甘油通道蛋白(CmGLP1)和一种大脑蛋白(CmBIB1),所有这些蛋白都在鳃和触角腺中表达。这些水通道蛋白的功能表达证实了CmAQP1、CmGLP1具有水运输能力,而CmBIB1没有,同时CmGLP1也运输尿素。在渗透顺应蟹的组织中相对较高的CmAQP1 mRNA表达表明,顶端/亚顶端定位的通道减弱了非渗透调节过程产生的渗透梯度,而其在稀释介质中的下调降低了组织的水渗透性,以促进渗透调节。尽管暴露于微咸水后血淋巴尿素浓度升高,但在最终尿液中未检测到尿素。由于其尿素运输能力,推测CmGLP1参与一种尿素保留机制,该机制被认为与稀释尿液的产生有关。总体而言,这些结果表明水通道蛋白参与渗透调节,并为未来研究水通道蛋白在甲壳类动物体积调节中的作用的机制研究提供了基础。