Penke Yaswanth K, Murugan Prem Anand, Matheshwaran Saravanan, Ramkumar Janakarajan, Kar Kamal K
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, U.P, India.
Advanced Nano Engineering Materials Laboratory, Department of Mechanical Engineering, and Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P, India.
Environ Sci Pollut Res Int. 2023 Jan;30(1):811-822. doi: 10.1007/s11356-022-22169-8. Epub 2022 Jul 29.
Copper-based ternary metal oxide (i.e., Cu0.52Al0.01Fe0.47O4) impregnated reduced graphene oxide nanohybrid is verified for microbial and arsenic treatment. Growth inhibition of colonies are observed around 99.99% (E. coli), and 99.83% (S. aureus) at 10-20 μg/mL of hybrid dosage, respectively. The inhibition rates for both the colonies are increased to 99.9998% at 80 μg/mL. TEM images have shown insight of cell-content/lipid leakage behavior after inoculating with the hybrid. The efficient hindrance towards microbial colony growth is attributed to better charge transfer, reactive oxygen species generation, and metal-ion release. Maximum arsenic sorption capacities are observed around 248 and 314 mg/g for As(III), and As(V), respectively (C ~ 500 ppm). Surface morphology studies onto arsenic adsorption are reported with atomic force microscope, and FT-IR/Raman analysis. A detailed discussion onto individual spectra of As 3d spectra confirmed the occurrence of redox transformation in arsenic species [As(III)]. The variation in the quantity (at. %) of oxygen functional groups in O1s spectra (i.e., M-O, M-OH, and -OH) onto the hybrid supported the ligand-exchange behavior. Cyclic voltammetry study in arsenic electrolytes (10 µM - 1 mM) provides the occurrence of various in-situ electrochemical reactions supporting the redox activity. A significant electromagnetic wave absorption characteristics of the present hybrid is proposed with plausible airborne antimicrobial-agent abilities.
负载铜的三元金属氧化物(即Cu0.52Al0.01Fe0.47O4)浸渍还原氧化石墨烯纳米杂化物被证实可用于微生物和砷的处理。在杂化物剂量为10 - 20μg/mL时,分别观察到大肠杆菌菌落生长抑制率约为99.99%,金黄色葡萄球菌菌落生长抑制率约为99.83%。在80μg/mL时,两种菌落的抑制率均提高到99.9998%。透射电子显微镜图像显示了接种杂化物后细胞内容物/脂质泄漏行为的情况。对微生物菌落生长的有效阻碍归因于更好的电荷转移、活性氧生成和金属离子释放。对于As(III)和As(V),最大砷吸附容量分别约为248和314mg/g(C≈500ppm)。用原子力显微镜以及傅里叶变换红外光谱/拉曼分析报道了砷吸附的表面形态研究。对As 3d光谱的各个光谱进行的详细讨论证实了砷物种[As(III)]中发生了氧化还原转变。杂化物上O1s光谱中氧官能团数量(原子百分比)的变化(即M - O、M - OH和 - OH)支持了配体交换行为。在砷电解质(10µM - 1mM)中的循环伏安研究表明发生了各种原位电化学反应,支持了氧化还原活性。提出了本杂化物具有显著的电磁波吸收特性以及合理的空气传播抗菌剂能力。