Applied Bioinformatics, Computer Science Department, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
Nat Commun. 2022 Jul 29;13(1):4407. doi: 10.1038/s41467-022-31922-z.
The detailed analysis and structural characterization of proteoforms by top-down proteomics (TDP) has gained a lot of interest in biomedical research. Data-dependent acquisition (DDA) of intact proteins is non-trivial due to the diversity and complexity of proteoforms. Dedicated acquisition methods thus have the potential to greatly improve TDP. Here, we present FLASHIda, an intelligent online data acquisition algorithm for TDP that ensures the real-time selection of high-quality precursors of diverse proteoforms. FLASHIda combines fast charge deconvolution algorithms and machine learning-based quality assessment for optimal precursor selection. In an analysis of E. coli lysate, FLASHIda increases the number of unique proteoform level identifications from 800 to 1500 or generates a near-identical number of identifications in one third of the instrument time when compared to standard DDA mode. Furthermore, FLASHIda enables sensitive mapping of post-translational modifications and detection of chemical adducts. As a software extension module to the instrument, FLASHIda can be readily adopted for TDP studies of complex samples to enhance proteoform identification rates.
基于自上而下的蛋白质组学(TDP)对蛋白质组进行详细分析和结构表征在生物医学研究中引起了广泛关注。由于蛋白质组的多样性和复杂性,完整蛋白质的依赖数据获取(DDA)并非易事。因此,专用的获取方法有可能极大地提高 TDP 的性能。在这里,我们介绍了 FLASHIda,这是一种用于 TDP 的智能在线数据采集算法,可确保实时选择多样化蛋白质组的高质量前体。FLASHIda 将快速电荷解卷积算法和基于机器学习的质量评估相结合,以实现最佳的前体选择。在对大肠杆菌裂解物的分析中,与标准 DDA 模式相比,FLASHIda 将独特的蛋白质组水平鉴定数量从 800 增加到 1500,或者在仪器时间的三分之一内生成几乎相同数量的鉴定。此外,FLASHIda 还能够实现灵敏的翻译后修饰映射和化学加合物的检测。作为仪器的软件扩展模块,FLASHIda 可以很容易地用于复杂样品的 TDP 研究,以提高蛋白质组的鉴定率。